Skip to main navigation menu Skip to main content Skip to site footer

Special session in honor of Antonio Carlos Massabni

Vol. 2 No. 2 (2019): October-February

Biotechnology and vaccines

DOI
https://doi.org/10.25061/2595-3931/IJAMB/2019.v2i2.40
Published
2020-02-28

Abstract

Biotechnology has demonstrated its importance for health development, especially in the discovery of new drugs and production of vaccines. On account of the occurrence of many diseases that have killed millions of people in the world, vaccines were developed to control infections and prevent diseases caused by viruses, bacteria, protozoans and fungi, and even eradicate them, as is the case of smallpox. Vaccines can be of first, second and third generation. Currently, vaccine manufacturing can be directed to the use of DNA containing the gene that encodes an antigenic protein. The present work is a literature review, with the objective to present the first-, second- and third-generation vaccines, as well as to make an analysis of the use of these vaccines in Brazil.

References

  1. [OTA] Office of Technology Assessment. commercial Biotechnology, an international analysis. Washington, US-Congress, 1984. [Cited 14 Oct. 2019] Available from: https://www.princeton.edu/~ota/disk3/1984/8407/840701.PDF
  2. Reis C, Capanema LXL, Palmeira Filho PL, Pieroni JP, Barros JO and Silva LG. Biotecnologia para saúde humana: tecnologias, aplicações e inserção na indústria farmacêutica. BNDES, 29:358-392 (2009). [Cited Oct 29, 2019]. Available at: https://web.bndes.gov.br/bib/jspui/bitstream/1408/2641/1/BS%2029_Biotecnologia%20para%20sa%c3%bade%20humana_P.pdf
  3. Malajovich MA. Biotecnologia. Rio de Janeiro: Axcel Books do Brasil, 2004.
  4. Braz LCC, Guimarães DT, Vaz MRF and Nóbrega FFF. Contribuições da biotecnologia no desenvolvimento e produção de vacinas de primeira, segunda e terceira gerações. Revista Saúde & Ciência Online, 3(3):189-206 (2014). https://doi.org/10.35572/rsc.v3i3.184
  5. Diniz MO and Ferreira LCS. Biotecnologia aplicada ao desenvolvimento de vacinas. Estudos Avançados, 24(70) 19-30 (2010). https://doi.org/10.1590/S0103-40142010000300003
  6. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A and Felgner PL. Direct gene transfer into mouse muscle in vivo. Science, 247(4949):1465-1468 (1990). https://doi.org/10.1126/science.1690918
  7. Plotkin SL and Plotkin SA. A short history of vaccination. In Section 1: General aspects of vaccination, Vaccines, pp. 1-13 (2004). https://doi.org/10.1016/B978-1-4557-0090-5.00017-3
  8. Gadelha C and Azevedo N. Inovação em vacinas no Brasil: experiência recente e constrangimentos estruturais. História, Ciências, Saúde-Manguinhos, 10(suppl.2):697-724. https://doi.org/10.1590/S0104-59702003000500012
  9. Akira H, Martins RM, Leal MLF, Freire MS and Couto AR. Atualização em vacinas, imunizações e inovação tecnológica. Ciência & Saúde Coletiva, 16(2):445-458 (2011). https:// doi.org/10.1590/S1413-81232011000200008
  10. Fernandes TMD, Chagas DC and Souza EM. Varíola e vacina no Brasil no século XX: institucionalização da educação sanitária. Ciência & Saúde Coletiva, 16(2):479-789 (2011). https://doi.org/10.1590/S1413-81232011000200011
  11. Brasil, Ministério da Saúde. Calendário Nacional de Vacinação. [Cited Jan. 6, 2020]. Available at: http://www.saude.gov.br/saude-de-a-z/vacinacao/calendario-vacinacao.
  12. Schwab K. A quarta revolução industrial. São Paulo: Edipro, 2019.
  13. Kobayashi E [Internet]. Como funcionam as vacinas e como são produzidas? (2009) [Cited Acesso Oct. 16, 2019] Available at: https://novaescola.org.br/conteudo/1091/como-funcionam-as-vacinas-e-como-sao-produzidas.
  14. Delves PJ, Martin SJ, Burton DR and Roitt IM. Roitt’s essential immunology, 12th ed. New Jersey: Willey-Blackwell, 2011.
  15. Kano FS, Vidotto O and Vidotto MC. DNA vaccines: general concerns and its applications in human and veterinary medicine. Semina: Ciências Agrárias, 28(4):709-726, 2007. https://doi.org/10.5433/1679-0359.2007v28n4p709
  16. Bloom BR. New approaches to vaccine development. Reviews of Infectious Diseases, 11, p.460-466 (1989).
  17. Riedel S. Edward Jenner and the history of smallpox and vaccination. Proceedings (Baylor University. Medical Center). 18(1): 21-25 (2005).
  18. [CDC] Centers for Disease Control and Prevention. Isolation of wild poliovirus type 3 among members of a religious community objecting to vaccination - Alberta, Canada, 1993. MMWR. Morbidity and Mortality Weekly Report, 42(17):337 (1993).
  19. Fundação Oswaldo Cruz [Internet]. Vacinas. (Cited Nov. 1, 2019). Available at: https://portal.fiocruz.br/vacinas.
  20. UptoDate. Prevention and treatment of measles (2009). [Cited Nov. 12, 2019]. Available at: http://www.uptodate.com/contents/prevention-and- treatment-of-measles.
  21. Oliveira AS, Setúbal S and Tavares W. Sarampo. In: Tavares W (ed.) Rotinas de diagnóstico e tratamento das doenças infecciosas e parasitárias. Rio de Janeiro: Atheneu, 2012. pp. 907-913.
  22. Brasil, Ministério da Saúde (2018). Ministério da Saúde atualiza casos de sarampo. [Cited Oct. 15, 2019]. Available at: http://www.saude.gov.br/noticias/agencia-saude/44399-ministerio-da-saude-atualiza- casos-de-sarampo-7.
  23. rubéola??
  24. Brasil, Ministério da Saúde (2018). Poliomielite: causas, sintomas, diagnóstico e vacinação. [Cited Oct. 15, 2019]. Available at: http://saude.gov.br/saude-de-a-z/poliomielite.
  25. Sant’anna C and Ferreira S. A imunização contra a tuberculose. Revista Hospital Universitário Pedro Ernesto, 6(1):51-55 (2007).
  26. Sauer LW and Tucker WH. Simultaneous Administration of Diphtheria Toxoid and Pertussis Vaccine in Young Children. Am. Jour. Pub. Health, 32(4):385-388 (1942).
  27. Brasil, Ministério da Saúde (2018). Coqueluche: causas, sintomas, tratamento, diagnóstico e prevenção. [Cited Oct. 15, 2019]. Available at: http://saude.gov.br/saude-de-a-z/coqueluche.
  28. Miranda JL, Andrade ESS, Souza GFM, Alves RD, Almeida D and Pinto LP. Vacinação: uma opção preventiva contra a cárie dental aprimorada pelos conhecimentos da imunologia e da biotecnologia. Brazilian Dental Science, 22(4):67-76 (2001). https://doi.org/10.14295/bds.2001.v4i1.109
  29. Ribeiro OMFB. O uso de nanopartículas de quitosano, revestidas com alginato como adjuvante do antígeno da hepatite B na vacinação através das mucosas oral e nasal [Doutorado]. Universidade de Coimbra, 2007.
  30. Sierra GV, Campa HC, Varcacel NM, Garcia IL, Izquierdo PL, Sotolongo PF, Casanueva GV, Rico CO, Rodriguez CR and Terry MH. Vaccine against group B Neisseria meningitidis: protection trial and mass vaccination results in Cuba. NIPH Annals, 14(2):195-207 (1991).
  31. Brasil, Ministério da Saúde. Difteria: o que é, causas, sintomas, tratamento e prevenção. [Cited Oct. 23, 2019]. Available at: http://saude.gov.br/saude-de-a-z/difteria.
  32. Instiuto Butantan. Assuntos regulatórios. Soro antitetânico. 2017.
  33. Brasil, Ministério da Saúde. Tétano Acidental: o que é, causas, sintomas, tratamento, diagnóstico e prevenção [Cited Oct. 23, 2019]. Available at: http://saude.gov.br/saude-de-a-z/tetano-acidental
  34. Rodrigues Junior JM, Lime KM, Castle AAM, Martins LDB, Saints SAS, Faccioli LH and Silva CL. É possível uma vacina gênica auxiliar no controle da tuberculose? Jornal Brasileiro de Pneumologia, 30(4):468-477 (2004).
  35. Davis HL and McCluskie MJ. DNA vaccines for viral diseases. Microbes and Infection, 1(1):7-21 (1999). https://doi.org/10.1016/s1286-4579(99)80009-4
  36. Liu M, Acres B, Balloul J-M, Bizouarne N, Paul S, Slos F. and Squiban P. Gene-based vaccines and immunotherapeutic. Proceedings of the National Academy of Sciences of the United States of America, 101(2):14567-14571 (2004). https://doi.org/10.1073/pnas.0404845101
  37. Grunwald T and Ulbert S. Improved DNA vaccination by adjuvants and sophisticated administration devices: vaccine-platforms for the fight against infectious diseases. Clinical and Experimental Vaccine Research, 4(1):1-10 (2015). https://doi.org/10.7774/cevr.2015.4.1.1
  38. Ulmer JB, Deck RR, DeWitt CM, Fu TM, Donnelly JJ, Caulfield MJ and Liu MA. Expression of a viral protein by muscle cells in vivo induces protective cell-mediated immunity. Vaccine, 1997, 15(8):839-841. https://doi.org/10.1016/s0264-410x(96)00256-3
  39. Zhang X, Divangahi M, Ngai P, Santosuosso M, Millar J, Zganiacz A, Wang J, Bramson J and Xing Z. Intramuscular immunization with a monogenic plasmid DNA tuberculosis vaccine: enhanced immunogenicity by electroporation and co-expression of GM-CSF transgene. Vaccine, 25(7):1342-1352 (2007). https://doi.org/10.1016/j.vaccine.2006.09.089
  40. Kutzler MA and Weiner DB. DNA vaccines: ready for prime time? Nature Reviews Genetics, 9(10):776-788 (2008). https://doi.org/10.1038/nrg2432
  41. Rappuoli R. From Pasteur to genomics: progress and challenges in infectious diseases. Nature Medicine 10(11):1177-1185 (2004). https://doi.org/10.1038/nm1129

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...