Skip to main navigation menu Skip to main content Skip to site footer

Special Edition Submission: "3D Printing for Medicine: biomaterials, processes and techniques"

Vol. 2 No. 1 (2019): March-September

State of the art in the use of bioceramics to elaborate 3D structures using robocasting

DOI
https://doi.org/10.25061/2595-3931/IJAMB/2019.v2i1.28
Published
2019-03-01

Abstract

Robocasting, também conhecido como Direct Ink Writing, é uma técnica de fabricação aditiva (AM), que inclui extração direta de sistemas coloidais, que consiste na exposição de camadas e um controlador controlado por computador de uma mídia altamente concentrada nesta extrusão. Este artigo apresenta uma visão geral das contribuições e desafios no desenvolvimento de biomateriais cerâmicos tridimensionais (3D) por esse método de impressão. O estado da arte em diferentes biocerâmicas como alumina, zircônia, fosfato de vidro, vidro / vitrocerâmica e compostos é avaliado e discutido em relação a suas aplicações e comportamento biológico, em uma pesquisa que produziu desde uma produção de próteses dentárias personalizadas a biofabricantes 3D humanos tecidos.Embora o robocasting represente uma interrupção na fabricação de estruturas porosas, como os andaimes para a Engenharia de Tecidos (TE), muitas vantagens ainda são necessárias, mas ainda são divulgadas, essa técnica já está usando a utilização de peças densas. Assim, são necessárias estratégias para a fabricação de biocerâmica densificada, com o objetivo de ampliar as possibilidades dessa técnica de AM. As vantagens e desvantagens e também perspectivas futuras da aplicação do robocasting no processamento biocerâmico também são exploradas.

References

  1. Salerno A, Netti PA, Introduction to biomedical foams, in Biomedical Foams for Tissue Engineering Applications, ed by Netti PA. Woodhead Publishing, pp 3-39 (2014).
  2. Cesarano J, Calvert PD, and Inventor: Sandia Corporation, Assignee, Freeforming Objects with Low-Binder Slurry. US Patent 6027326 A (2000).
  3. Lewis JA, Smay JE, Stuecker J, Cesarano J, Direct ink writing of three‐dimensional ceramic structures. J Am Ceram Soc 89: 3599(2006).
  4. Johansson E, Lidström O, Johansson J, Lyckfeldt O, Adolfsson E, Influence of resin composition on the defect formation in alumina manufactured by stereolithography. Mater 10: 138 (2017).
  5. Peng E, Zhang D, Ding J, Ceramic Robocasting: Recent Achievements, Potential, and Future Developments. Adv Mater 30 (47): 1802404(1-14) (2018).
  6. Stuecker JN, Cesarano J, Hirschfeld DA, Control of the Viscous Behavior of Highly Concentrated Mullite Suspensions for Robocasting. J Mater Process Technol 142 [2] 318–25 (2003).
  7. Zhao S, Xiao W, Rahaman MN, O’Brien D, Seitz-Sampson JW, Sonny Bal B, Robocasting of silicon nitride with controllable shape and architecture for biomedical applications. Int J Appl Ceram Technol 14(2): 117-127 (2017).
  8. Barry III AR, Shepherd RF, Hanson JN, Nuzzo RG, Wiltzius P, Lewis JA, Direct‐Write Assembly of 3D Hydrogel Scaffolds for Guided Cell Growth. Adv Mater 21: 2407-2410 (2009).
  9. Casas-Luna M, Tan H, Tkachenko S, Salamon D, Montufar EB, Enhancement of mechanical properties of 3D-plotted tricalcium phosphate scaffolds by rapid sintering. J Eur Ceram Soc 39: 4366–4374 (2019).
  10. Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A, Additive manufacturing of biomaterials. Prog Mater Sci 93: 45-111 (2018).
  11. Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomater 24:2363–78 (2003).
  12. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–85 (2014).
  13. Fielding G, Bose S. SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo. Acta Biomater 9:9137–48 (2013).
  14. Woodfield TBF, Malda J, de Wijn J, Péters F, Riesle J, van Blitterswijk CA. Design of porous scaffolds for cartilage tissue engineering using a threedimensional fiber-deposition technique. Biomater 25:4149–61 (2004).
  15. Eqtesadi S, Motealleh A, Perera FH, Miranda P, Pajares A, Wendelbo R, Guiberteau F, Ortiz AL, Fabricating geometrically-complex B4C ceramic components by robocasting and pressureless spark plasma sintering. Scr Mater 145: 14-18 (2018).
  16. Feilden E, Blanca EGT, Giuliani F, Saiz E, Vandeperre L, Robocasting of structural ceramic parts with hydrogel inks. J Eur Ceram Soc 36: 2525-2533 (2016).
  17. Quackenbush CL, French K, Neil JT, Fabrication of sinterable silicon nitride by injection molding. Ceram Eng Sci Proc 3:(1-2) Chapter 3 (1982).
  18. Millan AJ, Nieto MI, Moreno R, Aqueous injection moulding of silicon nitride. J Eur Ceram Soc 20:2661–2666 (2000).
  19. Albano MP, Garrido LB, Processing of concentrated aqueous silicon nitride slips by slip casting. J Am Ceram Soc 81:837–844 (1998).
  20. Wan T, Yao T, Hu H, Xia Y, Zuo K, Zheng Y, Fabrication of porous Si3N4 ceramics through a novel gelcasting method. Mater Lett 133:190–192 (2014).
  21. Griffith ML, Halloran JW, Freeform Fabrication of Ceramics via Stereolithography. J Am Ceram Soc 79(10): 2601–8 (1996).
  22. Homa J, Schwentenwein M, A Novel Additive Manufacturing Technology for High-Performance Ceramics, in Advanced Processing and Manufacturing Technologies for Nanostructured and Multifunctional Materials. Ceramic Engineering and Science Proceedings, ed by Ohji T, Singh M, Mathur S. John Wiley & Sons, Inc., Hoboken, NJ, pp. 33–40 (2014).
  23. Cesarano J III, Segalman R, Calvert P, Robocasting provides moldless fabrication from slurry deposition. Ceram Ind 148:94–102 (1998).
  24. Lewis JA, Smay JE, Stuecker J, Cesarano J III, Direct ink writing of threedimensional ceramic structures. J Am Ceram Soc 89:3599–3609 (2006).
  25. Cai K, Román-Manso B, Smay JE, et al, Geometrically complex silicon carbide structures fabricated by robocasting. J Am Ceram Soc 95:2660–2666 (2012).
  26. He GP, Hirschfeld DA, Cesarano JIII, Stuecker JN, Robocasting and mechanical testing of aqueous silicon nitride slurries, Technical Report, Sandia National Laboratory, SAND2000-1493C (2000).
  27. Fu Q, Saiz E, Tomsia AP, Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Acta Biomater 7:3547–3554 (2011).
  28. Liu X, Rahaman MN, Hilmas GE, Bal BS, Mechanical properties of bioactive glass (13-93) scaffolds fabricated by robotic deposition for structural bone repair. Acta Biomater 9(6):7025–7034 (2013).
  29. Xiao W, Zaeem MA, Bal BS, Rahaman MN, Creation of bioactive glass (13–93) scaffolds for structural bone repair using a combined finite element modeling and rapid prototyping approach. Mater Sci Eng C 68:651–662 (2016).
  30. Paredes C, Martínez-Vázquez FJ, Pajares A, Miranda P, Novel strategy for toughening robocast bioceramic scaffolds using polymeric cores. Ceram Int 45:19572–19576 (2019).
  31. Gu GX, Libonati F, Wettermark SD, Buehler MJ, Printing nature: Unraveling the role of nacre's mineral bridges. J Mech Behav Biomed Mater 76: 135-144 (2017).
  32. Soon G, Pingguan-Murphy B, Lai KW, Akbar SA, Review of zirconia-based bioceramic: Surface modification and cellular response. Ceram Int 42(11): 12543-12555 (2016).
  33. Baino F, Novajra G, Vitale-Brovarone C. Bioceramics and Scaffolds: A Winning Combination for Tissue Engineering. Front Bioeng Biotechnol 3:202 (2015).
  34. Hongshi Ma, Chun Feng, Jiang Chang, Chengtie Wu, 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta Biomater 79: 37-59 (2018).
  35. Mordor Intelligence, Bioceramics Market - Growth, Trends, And Forecast (2019 - 2024).
  36. https://www.mordorintelligence.com/industry-reports/bioceramics-market [accessed 9 September 2019].
  37. Cengiz IF, Pitikakis M, Cesario L, Parascandolo P, Vosilla L, Viano G, et al., Building the basis for patient-specific meniscal scaffolds: from human knee MRI to fabrication of 3D printed scaffolds. Bioprint 1: 1–10 (2016). doi:10.1016/j.bprint.2016.05.001
  38. Do AV, Khorsand B, Geary SM, Salem AK, 3D printing of scaffolds for tissue regeneration applications. Adv Healthc Mat 4: 1742–1762. (2015). doi: 10.1002/adhm.201500168
  39. Duarte Campos DF, Blaeser A, Buellesbach K, Sen KS, Xun W, Tillmann W, et al., Bioprinting organotypic hydrogels with improved mesenchymal stem cell remodeling and mineralization properties for bone tissue engineering. Adv Healthc Mater 5: 1336–1345 (2016). doi: 10.1002/adhm.201501033
  40. Jang J, Park HJ, Kim SW, Kim H, Park JY, Na SJ, et al., 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomater 112: 264–274 (2017).doi:10.1016/J.BIOMATERIALS.2016.10.026
  41. Hwa LC, Rajoo S, Noor AM, Ahmad N, Uday MB, Recent advances in 3D printing of porous ceramics: A review. Curr Opinion Sol State Mater Sci 21: 323–347 (2017).
  42. Nommeots-Nomm A, Lee PD, Jones JR. Direct ink writing of highly bioactive glasses. J Eur Ceram Soc 38: 837–844 (2018).
  43. Eqtesadi S, Motealleh A, Miranda P, Lemos A, Rebelo A, Ferreira JMF. A simple recipe for direct writing complex 45S5 Bioglass 3D scaffolds. Mater Letters 93: 68–71 (2013).
  44. Koski C, Onuike B, Bandyopadhyay A, Bose S. Starch-hydroxyapatite composite bone scaffold fabrication utilizing a slurry extrusion-based solid freeform fabricator. Addit Manuf 24: 47–59 (2018).
  45. Miranda P, Pajares A, Saiz E, Tomsia AP, Guiberteau F, Fracture Modes Under Uniaxial Compression in Hydroxyapatite Scaffolds Fabricated by Robocasting. J Biomed Mater Res A 83A(3): 646–55 (2007).
  46. Dellinger JG, Cesarano J, Jamison RD, Robotic Deposition of Model Hydroxyapatite Scaffolds with Multiple Architectures and Multiscale Porosity for Bone Tissue Engineering. J Biomed Mater Res A, 82A(2): 383–94 (2007).
  47. Marques CF, Perera FH, Marote A, Ferreira S, Vieira SI, Olhero S, Miranda P, Ferreira JMF, Biphasic calcium phosphate scaffolds fabricated by direct write assembly: Mechanical, anti-microbial and osteoblastic properties. J Eur Ceram Soc 37(1):359-368 (2017).
  48. Chung-Hun OH, Seok-Jung Hong, IJ, Hye-Sun Y, Seung-Hwan J, Hae-Won K, Development of Robotic Dispensed Bioactive Scaffolds and Human Adipose–Derived Stem Cell Culturing for Bone Tissue Engineering. Tissue Eng Part C 16(4): 561-71 (2010). doi: 10.1089=ten.tec.2009.0274
  49. Gao C, Rahaman MN, Gao Q, Teramoto A, Abe K, Robotic deposition and in vitro characterization of 3D gelatin-bioactive glass hybrid scaffolds for biomedical applications. J Biomed Mater Res A 101(7): 2027-37 (2013). doi: 10.1002/jbm.a.34496.
  50. Richard RC, Sader MS, Dai J, Thir RMSM, Soares GDA, Beta-type calcium phosphates with and without magnesium: From hydrolysis of brushite powder to robocasting of periodic scaffolds. J Biomed Mater Res A 102A: 3685–3692 (2014). doi: 10.1002/jbm.a.35040
  51. Won JE, Mateos-Timoneda MA, Castano O, Planell JA, Seo SJ, Lee EJ, Han CM, Kim HW, Fibronectin immobilization on to robotic-dispensed nanobioactive glass/polycaprolactone scaffolds for bone tissue engineering. Biotechnol Lett 37(4): 935-42 (2015). doi: 10.1007/s10529-014-1745-5.
  52. Varanasi VG, Russias J, E, Loomer PM, Tomsia AP. Novel PLA- and PCL-HA Porous 3D Scaffolds Prepared by Robocasting Facilitate MC3T3-E1 Subclone 4 Cellular Attachment and Growth. In: Biomaterials Science: Processing, Properties, and Applications V: Ceramic Transactions, Volume 254. (2015).
  53. https://doi.org/10.1002/9781119190134.ch16.
  54. Andrade S, Abdalla A, Montufar E, Corté L, Vanegas P. Fabrication of 3D Bioactive Ceramic Scaffolds by Robocasting. In: Braidot A., Hadad A. (eds) VI Latin American Congress on Biomedical Engineering CLAIB 2014, Paraná, Argentina 29, 30 & 31 October 2014. IFMBE Proceedings, vol 49. Springer, Cham, (2015).
  55. Martínez‐Vázquez F, Pajares A, Miranda P, Effect of the drying process on the compressive strength and cell proliferation of hydroxyapatite‐derived scaffolds. Int J Appl Ceram Technol 14:1101–1106 (2017). https://doi.org/10.1111/ijac.12755.
  56. Fiocco L, Elsayed H, Badocco D, Pastore P, Bellucci D, Cannillo V, Detsch R, Boccaccini AR, Bernardo E, Direct ink writing of silica-bonded calcite scaffolds from preceramic polymers and fillers. Biofabric 9: 025012 (2017). https://doi.org/10.1088/1758-5090/aa6c37.
  57. Stanciuc AM, Sprecher CM, Adrien J, Roiban LI, Alini M, Gremillard L, Peroglio M, Robocast zirconia-toughened alumina scaffolds: Processing, structural characterisation and interaction with human primary osteoblasts. J Eur Ceram Soc 38: 845–853 (2018). http://dx.doi.org/10.1016/j.jeurceramsoc.2017.08.031.
  58. Ben-Arfa BAE, Neto AS, Palamá IE, Salvado IMM, Pullar RC, Ferreira JMF, Robocasting of ceramic glass scaffolds: Sol–gel glass, new horizons. J Eur Ceram Soc 39: 1625–1634 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.11.019.
  59. Liu X, Rahaman MN, Liu Y, Bal BS, Bonewald LF, Enhanced bone regeneration in rat calvarial defects implanted with surface-modified and BMP-loaded bioactive glass (13-93) scaffolds. Acta Biomater 9(7): 7506-7517 (2013). doi: 10.1016/j.actbio.2013.03.039.
  60. Deliormanli AM, Liu X, Rahaman MN. Evaluation of borate bioactive glass scaffolds with different pore sizes in a rat subcutaneous implantation model. J Biomater Appl 28(5): 643-653, 2014.
  61. Rahaman MN, Lin Y, Xiao W, Liu X, Bal B. Evaluation of Long-Term Bone Regeneration in Rat Calvarial Defects Implanted With Strong Porous Bioactive Glass (13-93) Scaffolds. In book: Biomaterials Science: Processing, Properties, and Applications V. 1, John Wiley & Sons, Ins. New Jersey (2015). DOI: 10.1002/9781119190134.ch9.
  62. Lin Y, Xiao W, Liu X, Bal BS, Bonewald LF, Rahaman MN, Long-term bone regeneration, mineralization and angiogenesis in rat calvarial defects implanted with strong porous bioactive glass (13–93) scaffolds. J Non-Cryst Sol 432: 120–129 (2016). http://dx.doi.org/10.1016/j.jnoncrysol.2015.04.008.
  63. Simon JL, Michna S, Lewis JA, Rekow ED, Thompson VP, Smay JE, Yampolsky A, Parsons JR, Ricci JL, In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J Biomed Mater Res A, 83(3): 747-58 (2007). https://doi.org/10.1002/jbm.a.31329.
  64. Dellinger JG, Eurell JAC, Jamison RD, Bone response to 3D periodic hydroxyapatite scaffolds with and without tailored microporosity to deliver bone morphogenetic protein 2. J Biomed Mater Res A 76(2): 366-76 (2006). DOI: 10.1002/jbm.a.30523.
  65. Luo Y, Zhai D, Huan Z, Zhu H, Xia L, Chang J, Wu C. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration. ACS Appl. Mater. Interfaces 7: 24377−24383 (2015). doi: 10.1021/acsami.5b08911.
  66. Lin KF, He S, Song Y, Wang CM, Gao Y, Li JQ, Tang P, Wang Z, Bi L, Pei GX, Low-Temperature Additive Manufacturing of Biomimic Three-Dimensional Hydroxyapatite/Collagen Scaffolds for Bone Regeneration. ACS Appl Mater Interfaces 8(11): 6905-6916 (2016). https://doi.org/10.1021/acsami.6b00815.
  67. Shao H, Liu A, Ke X, Sun M, HE Y, Yang X, Fu J, Zhang L, Yang G, Liu Y, Xu S, Gou Z, 3D Robocasting Magnesium-doped Wollastonite/TCP Bioceramics Scaffolds with Improved Bone Regeneration Capacity in Critical Sized Calvarial Defects. J Mater Chem B 5(16): 2941-2951 (2017). doi: 10.1039/C7TB00217C.
  68. Zheng J, Carlson WB, Reed JS, Dependence of compaction efficiency in dry pressing on the particle size distribution. J Am Ceram Soc 78(9): 2527-2533 (1995).
  69. Konakawa Y, Ishizaki K, The particle size distribution for the highest relative density in a compacted body. Powder Technol 63: 241-246 (1990).
  70. Zheng J, Carlson WB, Reed JS, The packing density of binary powder mixtures. J Eur Ceram Soc 15: 479-483 (1995).
  71. Ferreira JMF, Diz HMM, Effect of the amount of deflocculant and powder size distribution on the green properties of silicon carbide bodies obtained by slip casting. J Hard Mater 3: 17-27 (1992).
  72. Taruta S, Takusagawa N, Okada K, Otsuka N, Slip casting of alumina powder mixtures with bimodal size distribution. J Ceram Soc Japan 104: 47-50 (1996).
  73. William JH, Zukoski CF, The rheology of bimodal mixtures of colloidal particles with long-range, soft repulsions. J Colloid Interface Sci 210: 343-351 (1999).
  74. Olhero S, Ferreira JM, Influence of particle size distribution on rheology and particle packing of silica-based suspensions. Powder Technol 139(1): 69–75 (2004).
  75. doi:10.1016/j.powtec.2003.10.004
  76. Nutz M, Furdin G, Medjahdi G, Marêché GF, Moreau M, Rheological properties of coal tar pitches containing micronic graphite powders. Carbon 35: 1023-1029 (1997).
  77. Yuan J, Murray HH, The importance of crystal morphology on the viscosity of concentrated suspensions of kaolins. Appl Clay Sci 12: 209-219 (1997).
  78. Joseph R, McGregor WJ, Martyn MT, Tanner KE, Coates PD, Effect of hydroxyapatite morphology/surface area on the rheology and processability of hydroxyapatite filled polyethylene composites. Biomater 23(21): 4295–4302 (2002). doi:10.1016/s0142-9612(02)00192-8
  79. Feilden E, Ferraro C, Zhang Q, García-Tuñón E, D’Elia E, Giuliani F, Vandeperre L, Saiz E. 3D Printing Bioinspired Ceramic Composites. Sci Rep 7: 13759 (2017).
  80. https://doi.org/10.1038/s41598-017-14236-9
  81. Miranda P, Saiz E, Gryn K, Tomsia AP, Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomater 2(4): 457–466 (2006). doi:10.1016/j.actbio.2006.02.004
  82. Eqtesadi S, Motealleh A, Miranda P, Pajares A, Lemos A, Ferreira, JMF, Robocasting of 45S5 bioactive glass scaffolds for bone tissue engineering. J Eur Ceram Soc 34(1): 107–118 (2014). doi:10.1016/j.jeurceramsoc.2013.08.003
  83. Zhang D, Peng E, Borayek R, Ding J. Controllable Ceramic Green-Body Configuration for Complex Ceramic Architectures with Fine Features. Adv Funct Mater 1807082 (2019). doi:10.1002/adfm.201807082
  84. He G, Hirschfeld DA, Cesarano J (n.d.), Processing and Mechanical Properties of Silicon Nitride Formed by Robocasting Aqueous Slurries, in Ceramic Engineering and Science
  85. Proceedings, 607–614 (2000). doi:10.1002/9780470294635.ch72
  86. Glymond D, Vandeperre LJ, Robocasting of MgO-doped alumina using alginic acid slurries. J Am Ceram Soc 101(8): 3309–3316 (2018). doi:10.1111/jace.15509
  87. Schlordt T, Schwanke S, Keppner F, Fey T, Travitzky N, Greil P, Robocasting of alumina hollow filament lattice structures. J Eur Ceram Soc 33(15-16): 3243–3248 (2013). doi:10.1016/j.jeurceramsoc.2013.06.001
  88. Powell J, Assabumrungrat S, Blackburn S, Design of ceramic paste formulations for co-extrusion, Powder Technol 245:21-27 (2013).
  89. Bourret J, El Younsi I, Bienia M, Smith A, Geffroy PM, Marie J, Ono Y, Chartier T, Pateloup V, Micro extrusion of innovative alumina pastes based on aqueous solvent and eco-friendly binder. J Eur Ceram Soc 38(7): 2802-2807 (2018).
  90. Faes M, Valkenaers H, Vogeler F, Vleugels J, Ferraris E, Extrusion-based 3D Printing of Ceramic Components, in Procedia CIRP 28: 76-81 (2015).
  91. Li W, Ghazanfari A, McMillen D, Leu MC, Hilmas GE, Watts J, Characterization of zirconia specimens fabricated by ceramic on-demand extrusion. Ceram Int 44(11): 12245-12252 (2018).
  92. Azzolini A, Sglavo VM, Downs JÁ, Novel method for the identification of the maximum solid loading suitable for optimal extrusion of ceramic pastes. J Adv Ceram 3(1): 7–16 (2014).
  93. Franks GV, Tallon C, Studart AR, Sesso ML, Leo S, Colloidal processing: enabling complex shaped ceramics with unique multiscale structures. J Am Ceram Soc 100(2): 458–490 (2017). doi:10.1111/jace.14705
  94. Ben-Arfa BAE, Neto AS, Miranda Salvad IM, Pullar RC, Ferreira JMF, Robocasting: Prediction of ink printability in solgel bioactive glass. J Am Ceram Soc 102(4): 1608-1218 (2018). doi:10.1111/jace.16092
  95. Stickel JJ, Powell RL, Fluid mechanics and rheology of dense suspensions. Annu Rev Fluid Mech 37: 129–149 (2005). doi: 10.1146/annurev.fluid.36.050802.122132
  96. Schlordtil T, Greil P, Robocasting of Alumina Lattice Truss Structures. J Ceram Sci Technol 3(2): 81–8 (2012).
  97. Smay JE, Cesarano J, Lewis JA, Colloidal Inks for Directed Assembly of 3-D Periodic Structures. Langmuir, 18(14), 5429–5437 (2002). doi:10.1021/la0257135
  98. Lewis JA, Colloidal Processing of Ceramics. J Am Ceram Soc 83(10): 2341–2359 (2004). doi:10.1111/j.1151-2916.2000.tb01560.x
  99. Wahl L, Lorenz M, Biggemann J, Travitzky N, Robocasting of reaction bonded silicon carbide structures, J Eur Ceram Soc 39(15): 4520-4526 (2019).
  100. M’Barki A, Bocquet L, Stevenson A, Linking Rheology and Printability for Dense and Strong Ceramics by Direct Ink Writing. Scientific Reports 7:6017 (2017).
  101. Wolfs, R.J.M., Suiker, A.S.J. Structural failure during extrusion-based 3D printing processes. Int J Adv Manuf Technol 104, 565–584 (2019). https://doi.org/10.1007/s00170-019-03844-6franks
  102. Lui YS, Sow WT, Tan LP, Wu Y, Lai Y, Li H, 4D Printing and Stimuli-responsive Materials in Biomedical Applications. Acta Biomater 92: 19–36 (2019).
  103. Gao B, Yang Q, Zhao X, Jin G, Ma Y, Xu F, 4D Bioprinting for Biomedical Applications. Trends Biotechnol 34(9): 746-756 (2016).
  104. Liu G, Zhao Y, Wu G, Lu J, Origami and 4D printing of elastomer-derived ceramic structures. Sci Adv 4: eaat0641 (2018).
  105. Tamay DG, Dursun Usal T, Alagoz AS, Yucel D, Hasirci N and Hasirci V, 3D and 4D Printing of Polymers for Tissue Engineering Applications. Front Bioeng Biotechnol 7:164 (2019). doi: 10.3389/fbioe.2019.00164
  106. Bargardi, F., Le Ferrand, H., Libanori, R. et al. Bio-inspired self-shaping ceramics. Nat Commun 7: 13912 (2016). https://doi.org/10.1038/ncomms13912
  107. Franchina G, Scanferla P, Zeffiro L, Elsayed H, Baliello A, Giacomello G, Pasetto M, Colombo P, Direct ink writing of geopolymeric inks. J Eur Ceram Soc 37: 2481–2489 (2017).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...