As a result of the increasing need for new biocompatible materials, polymer-based gels have become promising options. Lately, photoluminescent gels have shown potential for applications in biotechnology and non-invasive tracking due to their ability to emit light when temperature changes occur. This research investigates the incorporation of Han Purple (HP) pigment into a polyethylene glycol/Laponite matrix [92,5/7,5%] (P7LHP0%) to produce a 3D-printed gel. The gels were examined for possible use as smart sensors, focusing on their optical and thermal characteristics. Formulations with HP concentrations of 0.0%, 0.5%, and 2.0% were prepared, followed by extrusion-based 3D printing. Characterization techniques included FTIR, SEM, and optical analyses (emission and excitation spectra). The findings showed 3D structures with good shape fidelity while FTIR indicated suitable compatibility between HP and the matrix. Optical analysis revealed fluorescence with an excitation band between 400 and 700 nm, with a maximum at 620 nm, and an emission band at 830 - 1000 nm with a peak at 925 nm. This study highlights the potential of HP as a promising material for fluorescent gels in 3D printing, creating new opportunities for biotechnology applications