Skip to main navigation menu Skip to main content Skip to site footer

Original Article

Vol. 6 No. 1 (2024)

Induction of mineralized matrix production by recombinant human BMP-2 Immobilized in TEMPO-Oxidized Cellulose Hydrogel: a novel target for tissue repair

DOI
https://doi.org/10.52466/ijamb.v6i1.124
Published
2024-03-01

Abstract

Bone morphogenetic proteins (BMPs) are potent promoters of osteogenesis, especially BMP-2, which has been highlighted for acting as a growth and differentiation factor that promotes new bone formation. There are several biomaterials that can be used to release bioactive substances, such as natural polymers. Cellulose has stood out for the possibility of its chemical modification using the reagent 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) to obtain a cellulose derivative (TEMPO oxidized cellulose nanofibers - ToCNF), which is shown to be a promising material for biological application. The objective of this work was to evaluate TEMPO cellulose immobilized with rhBMP-2 against the activity of inducing bone cell proliferation and differentiation in vitro, evaluating the ability to form bone matrix in pre-osteoblastic cell lineage of rats - MC3T3. Cell viability assays using resazurin were performed and for detection of mineralized matrix, Alizarin Red solution was used. The results reveal the good capacity of TEMPO cellulose functionalized with rhBM-2 in inducing the synthesis of mineralized bone matrix.

References

  1. Bessa PC, Pedro AJ, Klösch B, Nobre A, van Griensven M, Reis RL, et al. Osteoinduction in human fat-derived stem cells by recombinant human bone morphogenetic protein-2 produced in Escherichia coli. Biotechnol Lett. 2008 Jan;30(1):15–21.
  2. Colange AL. Produção da BMP-2 recombinante de humano (rhBMP-2) para funcionalização de biopolímeros em reparo ósseo. 2017; Available from: https://uniara.com.br/arquivos/file/ppg/biotecnologia-medicina-regenerativa-quimica-medicinal/repositorio-cientifico/dissertacoes/2017/ana-lucia-colange.pdf
  3. Lee JH, Kim CS, Choi KH, Jung UW, Yun JH, Choi SH, et al. The induction of bone formation in rat calvarial defects and subcutaneous tissues by recombinant human BMP-2, produced in Escherichia coli. Biomaterials. 2010 May;31(13):3512–9.
  4. Kim HS, Park JC, Yun PY, Kim YK. Evaluation of bone healing using rhBMP-2 soaked hydroxyapatite in ridge augmentation: a prospective observational study. Maxillofac Plast Reconstr Surg. 2017 Dec;39(1):40.
  5. Hrubi E, Imre L, Robaszkiewicz A, Virág L, Kerényi F, Nagy K, et al. Diverse effect of BMP-2 homodimer on mesenchymal progenitors of different origin. Hum Cell. 2018 Apr;31(2):139–48.
  6. Khojasteh A, Behnia H, Naghdi N, Esmaeelinejad M, Alikhassy Z, Stevens M. Effects of different growth factors and carriers on bone regeneration: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013 Dec;116(6):e405-423.
  7. Ihm HJ, Yang SJ, Huh JW, Choi SY, Cho SW. Soluble expression and purification of synthetic human bone morphogenetic protein-2 in Escherichia coli. BMB Rep. 2008 May 31;41(5):404–7.
  8. Haidar ZS, Hamdy RC, Tabrizian M. Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part A: Current challenges in BMP delivery. Biotechnol Lett. 2009 Dec;31(12):1817–24.
  9. Groeneveld EH, Burger EH. Bone morphogenetic proteins in human bone regeneration. Eur J Endocrinol. 2000 Jan;142(1):9–21.
  10. Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts). Journal of Tissue Engineering and Regenerative Medicine. 2008;2(1):1–13.
  11. Leite MDR, Marinho TMA, Fook MVL. Obtenção e caracterização de scaffolds de policaprolactona produzidos a partir do sistema bioextruder. Revista Eletrônica de Materiais e Processos. 2016;11.
  12. Oliveira LS de AF, Oliveira CS, Machado APL, Rosa FP. Biomateriais com aplicação na regeneração óssea – método de análise e perspectivas futuras. Revista de Ciências Médicas e Biológicas. 2010 Nov 18;9:37–44.
  13. Tabata Y. Biomaterial technology for tissue engineering applications. J R Soc Interface. 2009 Jun 6;6 Suppl 3(Suppl 3):S311-324.
  14. Celestino V, Maestri G, Bierhalz A, Immich A. Produção e caracterização de hidrogel de carboximetilcelulose para aplicação na área de curativos biomédicos. In São Paulo; 2017.
  15. Yonezawa UG, Moura MR de, Aouada FA. Estado da arte: um estudo sobre polímeros biodegradáveis na germinação e desenvolvimento de plantas. Caderno de Ciências Agrárias. 2017 Aug 31;9(2):69–78.
  16. Aljohani W, Ullah MW, Zhang X, Yang G. Bioprinting and its applications in tissue engineering and regenerative medicine. Int J Biol Macromol. 2018 Feb;107(Pt A):261–75.
  17. Saito T, Kimura S, Nishiyama Y, Isogai A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules. 2007 Aug;8(8):2485–91.
  18. Singh M, Ray AR, Vasudevan P. Biodegradation studies on periodate oxidized cellulose. Biomaterials. 1982 Jan;3(1):16–20.
  19. Abouzeid RE, Salama A, El-Fakharany EM, Guarino V. Mineralized Polyvinyl Alcohol/Sodium Alginate Hydrogels Incorporating Cellulose Nanofibrils for Bone and Wound Healing. Molecules. 2022 Jan;27(3):697.
  20. Gorgieva S, Girandon L, Kokol V. Mineralization potential of cellulose-nanofibrils reinforced gelatine scaffolds for promoted calcium deposition by mesenchymal stem cells. Materials Science and Engineering: C. 2017 Apr 1;73:478–89.
  21. Salama A, Abou-Zeid RE, Cruz-Maya I, Guarino V. Soy protein hydrolysate grafted cellulose nanofibrils with bioactive signals for bone repair and regeneration. Carbohydrate Polymers. 2020 Feb 1;229:115472.
  22. Yao S, Xu Y, Zhou Y, Shao C, Liu Z, Jin B, et al. Calcium Phosphate Nanocluster-Loaded Injectable Hydrogel for Bone Regeneration. ACS Appl Bio Mater. 2019 Oct 21;2(10):4408–17.
  23. Ingole VH, Vuherer T, Maver U, Vinchurkar A, Ghule AV, Kokol V. Mechanical Properties and Cytotoxicity of Differently Structured Nanocellulose-hydroxyapatite Based Composites for Bone Regeneration Application. Nanomaterials. 2020 Jan;10(1):25.
  24. Im S, Choe G, Seok JM, Yeo SJ, Lee JH, Kim WD, et al. An osteogenic bioink composed of alginate, cellulose nanofibrils, and polydopamine nanoparticles for 3D bioprinting and bone tissue engineering. International Journal of Biological Macromolecules. 2022 Apr 30;205:520–9.
  25. da Silva Perez D, Montanari S, Vignon MR. TEMPO-mediated oxidation of cellulose III. Biomacromolecules. 2003;4(5):1417–25.
  26. De Lima Pizi Cândido A, Fregonezi NF, Carvalho AJF, Trovatti E, Resende FA. TEMPO-Oxidized Cellulose Nanofibers In Vitro Cyto-genotoxicity Studies. BioNanoSci. 2020 Sep 1;10(3):766–72.
  27. Trovatti E, Tang H, Hajian A, Meng Q, Gandini A, Berglund LA, et al. Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide. Carbohydrate Polymers. 2018 Feb 1;181:256–63.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Most read articles by the same author(s)