3D electrospinning used in medical materials

Natasha Maurmann, Juliana Girón, Bruna Borstmann Jardim Leal, Patricia Pranke

Abstract


Electrospinning (ES) is an interesting and efficient technique for biomedical use. This is a method used for the fabrication of polymer fibers used in tissue engineering (TE). The electrospun nano- and microfibers biomaterial, called scaffolds, are also used for regenerative medicine. The aim of the present mini-review is to present methods used to fabricate 3D fibers by electrospinning and their applications in TE. Also, discussed here are issues regarding the electrospinning limitations and research challenges.


Keywords


Biomaterials; Electrospun; Three dimensional (3D) culture; Tissue Engineering

Full Text:

PDF

References


Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–53 (2003). DOI: 10.1016/S0266-3538(03)00178-7

Maurmann N, Sperling L, Pranke P. Electrospun and Electrosprayed Scaffolds for Tissue Engineering, in Cutting-Edge Enabling Technologies for Regenerative Medicine, Advances in Experimental Medicine and Biology, ed by H. J. Chun et al. Springer Nature Singapore, pp 79–100 (2018). DOI: 10.1007/978-981-13-0950-2

Agarwal S, Burgard M, Greiner A, Wendorff J. In Electrospinning : A Practical Guide to Nanofibers. Ed by Walter de Gruyter GmbH, Berlin/ Boston 2016. 189 pgs (2016).

Costa RGF, Oliveira JE de, Paula GF de, Picciani PH de S, Medeiros ES de, Ribeiro C, et al. Eletrofiação de Polímeros em Solução: parte I: fundamentação Teórica. Polímeros 22:170–177 (2012). DOI: 10.1590/S0104-14282012005000026.

Nagle AR, Fay C, Xie Z, Wang X, Wallace GG, Higgins MJ. Patterning and process parameter effects in 3D suspension near-field electrospinning of nanoarrays. Nanotechnology (2019). DOI: 10.1088/1361-6528/ab3c87.

Maurmann N, Pereira DP, Burguez D, Pereira FDADS, Neto PI, Rezende RA, et al. Mesenchymal stem cells cultivated on scaffolds formed by 3D printed PCL matrices, coated with PLGA electrospun nanofibers for use in tissue engineering. Biomed Phys Eng Express 3:045005 (2017). DOI: 10.1088/2057-1976/aa6308.

Sousa RB De, Vieira EG, Osajimafurti JA et al. Recent advances in methods of synthesis and applications of bacterial cellulose/calcium phosphates composites in bone tissue engineering. IJAMB 1:33–42 (2018). DOI: 10.25061/2595-3931/IJAMB/2018.v1i2.16

Steffens D, Braghirolli DI, Maurmann N, Pranke P. Update on the main use of biomaterials and techniques associated with tissue engineering. Drug Discov Today 23:1474–1488 (2018). DOI: 10.1016/j.drudis.2018.03.013.

Lin W, Chen M, Qu T, Li J, Man Y. Three-dimensional electrospun nanofibrous scaffolds for bone tissue engineering. J Biomed Mater Res Part B (2019). DOI: 10.1002/jbm.b.34479.

Dhandayuthapani B, Yasuhiko Y, Maekawa T, Kumar DS. Fabrication and characterization of nanofibrous scaffold developed by electrospinning. Mat Res 14:317–325 (2011). DOI: 10.1590/S1516-14392011005000064.

Chen W, Xu Y, Liu Y, Wang Z, Li Y, Jiang G, et al. Three-dimensional printed electrospun fiber-based scaffold for cartilage regeneration. Materials & Design 179 (2019). DOI: 10.1016/J.MATDES.2019.107886.

Wang K, Xu M, Zhu M, Su H, Wang H, Kong D, et al. Creation of macropores in electrospun silk fibroin scaffolds using sacrificial PEO-microparticles to enhance cellular infiltration. J Biomed Mater Res Part A 101(12):3474–81 (2013). DOI: 10.1002/jbm.a.34656

Zander NE, Orlicki JA, Rawlett AM, Beebe TP. Electrospun polycaprolactone scaffolds with tailored porosity using two approaches for enhanced cellular infiltration. J Mater Sci Mater Med 24(1):179–87 (2013). DOI: 10.1007/s10856-012-4771-7

Sheikh FA, Ju HW, Lee JM, Moon BM, Park HJ, Lee OJ, et al. 3D electrospun silk fibroin nanofibers for fabrication of artificial skin. Nanomedicine 11(3):681–91 (2015). DOI: 10.1016/j.nano.2014.11.007

Lee JB, Jeong SI, Bae MS, Yang DH, Heo DN, Kim CH, et al. Highly Porous Electrospun Nanofibers Enhanced by Ultrasonication for Improved Cellular Infiltration. Tissue Eng Part A 17(21–22):2695–702 (2011). DOI: 10.1089/ten.TEA.2010.0709

Lakhtakia A, Martín-Palma RJ, Carter P, Bhattarai N. Bioscaffolds: Fabrication and Performance. Eng Biomimicry 161–88 (2019). DOI: 10.1016/B978-0-12-415995-2.00007-6

Jiang J, Carlson MA, Teusink MJ, Wang H, MacEwan MR, Xie J. Expanding Two-Dimensional Electrospun Nanofiber Membranes in the Third Dimension By a Modified Gas-Foaming Technique. ACS Biomater Sci Eng 1(10):991–1001 (2015). DOI: 10.1021/acsbiomaterials.5b00238

Dos Santos FP, Peruch T, Katami SJV, Martini APR, Crestani TA, et al. Poly (lactide-co-glycolide) (PLGA) scaffold induces short-term nerve regeneration and functional recovery following sciatic nerve transection in rats. Neuroscience 396:94–107 (2019). DOI: 10.1016/j.neuroscience.2018.11.007.

Lee SJ, Nowicki M, Harris B, Zhang LG. Fabrication of a Highly Aligned Neural Scaffold via a Table Top Stereolithography 3D Printing and Electrospinning. Tissue Eng Part A 23(11–12):491–502 (2017). DOI: 10.1089/ten.TEA.2016.0353

Yeo M, Kim G. Cell-printed hierarchical scaffolds consisting of micro-sized polycaprolactone (PCL) and electrospun PCL nanofibers/cell-laden alginate struts for tissue regeneration. J Mater. Chem. B. 2:314–324 (2013). DOI: 10.1039/C3TB21163K

Miguel SP, Cabral CSD, Moreira AF, Correia IJ. Production and characterization of a novel asymmetric 3D printed construct aimed for skin tissue regeneration. Colloids Surfaces B Biointerfaces 181:994–1003 (2019). DOI: 10.1016/j.colsurfb.2019.06.063




DOI: https://doi.org/10.25061/2595-3931/IJAMB/2019.v2i1.26

Refbacks

  • There are currently no refbacks.


Rua Carlos Gomes, 1217 - Centro -  Araraquara / SP - CEP 14801-340 -  e-ISSN:  2595-3931