Bioprinting is a technique adapted from 3D printing to create biological constructs, including high-quality skin substitutes. It matches or exceeds the quality of traditional fabrication methods, offering precision, consistency and speed, critical attributes for large-scale production. A variety of materials are used, most of them natural, such as alginate, chitosan and gelatin, with cells incorporated into the bioink. These cells may belong to the replicated tissue or include stem cells that can differentiate into the desired cell types. Bioprinting enables precise placement of the skin’s layers: hypodermis, dermis and epidermis, allowing for replication of the skin’s complex architecture. Notably, bioprinted skin constructs can closely resemble native tissue, even forming structures like hair follicles and glands as the incorporated cells grow, migrate and differentiate. Artificial intelligence (AI) and machine learning (ML) have recently been applied to enhance efficiency, precision and success. AI tools reduce trial and error by optimizing parameters, bioink composition and quality control. This review explores bioprinting methods, materials and advancements, including in situ bioprinting, the use of robotic devices and the emerging role of artificial intelligence.