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Abstract: For thousands of years, the silk produced in the Bombyx mori glands and used in the preparation of cocoons has been employed in the 
textile industry to produce fabric. These cocoons consist mainly of fibroin (SF – silk fibroin), a fibrous protein with unique mechanical properties 
and which is biocompatible, biodegradable, and inexpensive. SF can be extracted from the cocoons by processing in aqueous medium, and it 
can be employed to obtain materials for different applications, including biomaterials for body implants, scaffolds for tissue engineering, and 
materials for photonic devices such as sensors, waveguides, and lasers. 
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Introduction
Silk is a natural and semicrystalline polymer with high 

malleability, unique mechanical properties, and superior 
tenacity as compared to any currently employed synthetic 
fiber.1,2 For thousands of years, since silk was discovered 
in China in the middle of 2600 BC, the textile industry has 
explored this material in its natural form.3 Silk is produced 
in specific glands called sericigenic glands. Some inver-
tebrates spin it into the fiber form during metamorpho-
sis, but silk composition will depend on source.4,5 The silk 
from silkworm (Bombyx mori) is the most produced and 
commercialized. It consists chiefly of fibroin and sericin 
proteins, and Bombyx mori uses it to manufacture the co-
coons, to which fibroin and sericin acids provide resistan-
ce and protection, respectively.2,6 Sericulture refers to the 
cultivation of silkworm. This culture was spread in Brazil 
in the beginning of the last century. It occurs mainly in the 
state of Paraná, in the so-called Vale da Seda paranaense, 
where silk threads are produced and exported to seve-
ral countries.7-9 However, in the 1940s, fibroin, a fibrous 
protein and a major component of the silk thread, started 
to arouse scientific interest. Structurally, this protein con-
sists of two chains, one ~25-kDa chain and one ~325-
kDa chain.6 The largest chain comprises distinct regions 
known as silk I and silk II, which present different degrees 
of crystallinity.10 Fibroin can be extracted from silk threads 
by degumming, a low-cost process that requires water.2 
The solution obtained after this process can be used to 
develop numerous materials such as films, fibers, and 
spheres, among others. Additionally, the solution can be 
submitted to several treatments, to give a series of pro-
ducts;2 e.g., silk sutures,6,11 which have been employed 

for decades. Moreover, the solution can be used to obtain 
biomaterials, including implants and scaffolds for tissue 
engineering12,13 as well as photonic devices like sensors, 
waveguides, and lasers.14 Silk-based materials have the 
advantage of being biocompatible,2,12,13 biodegradab-
le,15 resorbable,16 and mechanically robust1, among other 
characteristics, which allows them to be widely applied 
and opens various possibilities for their use in countless 
areas. In addition, the cocoons can be obtained as waste 
from the textile industry, which reduces the cost of pro-
ducing new materials.

History
The story that describes the discovery of silk by huma-

nity is full of legends and divergences.3 According to the 
account of  the Chinese thinker and philosopher Confu-
cius (571-479 BC), the most accepted to date, in 2640 BC 
silk was accidentally discovered by the Chinese Empress 
Hsi-Ling-Shi, wife of Emperor Huang Di (or Huang-Ti), 
also known as the “Yellow Emperor”, who is thought to 
have ruled China from 2697 to 2597 BC, before the Xia 
dynasty. Legend has it that silk was discovered while the 
Empress was drinking a cup of tea under a mulberry tre-
e—a cocoon fell into her cup and, upon contact with the 
hot water, it broke apart, revealing the fiber produced by 
silkworm.3,17-19 Moved by curiosity, Hsi-Ling-Shi would 
have managed to transform that material into a piece of 
fabric and slowly started the weaving process, which is 
practically the same as the one used today. Although the 
textile industry was established at that time, it only pe-
aked around 1500 BC, during the Shang dynasty. In the 
two following millennia, the Chinese were the exclusive 
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manufacturers and exporters of silk: being aware of the 
commercial value of the fabric, the Chinese government 
banned mulberry seeds and silkworm eggs from being 
exported and threatened those who disrespected the 
ban with the death penalty.3,20 

However, the ban was bypassed in 552 of the common 
era, when Justinian, the Roman Emperor, sent monks in 
disguise on a spy mission to China, to hide silkworm eggs 
in their luggage and take them to Constantinople inside 
bamboo sticks. As a result, the capital of the Roman em-
pire at the time, present-day Istanbul, became the first 
European silk center, and this episode marked the arrival 
of sericulture in the Western World and the beginning of 
its dissemination to all continents in the following cen-
turies. Due to its lightness, brightness, and beauty, silk, 
like precious stones and gold, has always been treated 
as a valuable object. The high commercial interest in it 
motivated the creation of the largest commercial route in 
the world, the so-called “Silk Road”, leading to the fou-
ndation of great civilizations.3,20 This path, which was the 
most important cultural and commercial link between the 
West and the East for hundreds of years, only received 
the name of “Silk Road” in the 19th century. Even thou-
gh many products have been sold and traded along it, 
the one with the greatest prominence and attracting the 
most attention has always been the Chinese fabric, which 
led the German traveler and geologist Ferdinand Freiherr 
to name the path “Silk Road” (from the original “Die Sie-
denstrasse”, in German).3,21-24

In Brazil, the history of silk fabric production began 
centuries later. In this country, the first mulberry trees 
were apparently grown in the middle of the 18th century in 
the state of Minas Gerais, as demanded by Queen Dona 
Maria I (also called “The Pious” and “The Crazy”), who 
ruled Portugal and Brazil at the time, until she was consi-
dered mentally incapable. However, although Brazil alre-
ady had the basic subsidies for the cultivation of silkworm, 
silk fabric production only started in the Second Empire 
(1850). This is because Portugal had an agreement with 
England that forced the Portuguese colonies to import 
English fabric, thereby delaying the emergence of the 
Brazilian textile industry. In fact, this industry only de-
veloped after the Second World War, in the second half 
of the 20th century. Nevertheless, today Brazil is the fif-
th largest producer of silk fabric in the world. China still 
dominates the market, accounting for almost half of the 
silk fabric production on the planet. Even though Brazil 
remains behind China, India, Uzbekistan, and Thailand, 
the Brazilian silk fabric industry stands out for the quality 
of its yarns, produced mainly in the state of Paraná.3,23,24

Production and obtainment
Obtaining silk on a large scale is only possible thanks 

to sericulture, the part of zootechnics that deals with the 
study and development of silkworm (Kingdom: Animalia, 

Phylum: Arthropoda, Clade: Pancrustacea, Order: Lepi-
doptera, Genus: Bombyx, Species: Bombyx mori). 25,26 
Sericulture is a thorough process that has been carried 
out pretty much the same way since silk was discovered 
approximately 4,500 years ago. It is the oldest known 
agroindustrial activity, and it is currently practiced by 
approximately 40 countries.18 The so-called “Silk Farms” 
are in fact small family productions that operate without 
the need for advanced technologies given the delicacy of 
the cocoons produced therein. Therefore, production can 
be implemented in small areas and is promising for the 
social and economic development of rural areas. This ac-
tivity keeps producers in the countryside, and it depends 
on some factors, especially climatic ones.7 In Brazil, the 
only Western country that produces silk on a commercial 
scale, production began in the 19th century, in the state of 
São Paulo. Sericulture is integrated with the industry and 
employs approximately 8,000 families. These families re-
ceive the eggs – supplied by companies specialized in 
the production of yarns – to cultivate silkworm and to 
obtain the cocoons. These families also grow mulberries 
(Morus sp) to feed silkworm. Indeed, silkworm feeds on 
the leaves of these pants, which must be grown isolated 
and without pesticides, so as not to interfere in the qua-
lity of the silk threads. In Brazil, this activity is currently 
concentrated in the state of Paraná, as already mentioned. 
More specifically, it occurs in the so-called Vale da Seda 
paranaense, which comprises 29 cities.7-9,18,27 This acti-
vity started there in 1950 and, 30 years later, this region 
became the largest national producer, with about 53% of 
all the Brazilian silk production. This percentage increa-
sed to 90% in the 1990s and has remained so until today. 
The largest share of silk production is exported to textile 
industries worldwide. To ensure the quality of the yarns 
produced nationally, local producers select and use only 
high-quality cocoons; the others (10 to 20% of all the 
production) are discarded.7,8 Silk is composed of natural 
proteins28 produced in specific glands called sericigenic 
glands. It is spun into fibers by invertebrates such as mi-
tes, moths, spiders, and silkworm;5 its composition de-
pends on the source. The best-known and best-charac-
terized silks originate from silkworm (Bombyx mori) and 
spiders (Nephila clavipes),5,29-31 which stand out for their 
strength and hardness.32 However, spiders have preda-
tory nature and low production,6 so the silk produced by 
them is not commercialized very frequently. On the other 
hand, silk production by silkworm is expressive and oc-
curs through sericulture.

Silkworm uses silk to produce the cocoons, where 
it lives until it undergoes metamorphosis and becomes 
a moth. Silkworm development comprises four stages – 
egg, larva, pupa, and moth – and lasts around 60 days. In 
the first step, around 300–400 eggs are deposited by the 
female moth at a time; the moth dies almost immedia-
tely after egg deposition. Fourteen days later, these eggs 
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hatch into larvae. The larval stage lasts approximately 27 
days and comprises five stages, during which the larvae 
feed on mulberry leaves and begin to prepare the cocoon, 
a process that takes approximately four days and which is 
carried out by using a single wire measuring between 700 

and 1500 m long. Once this is done, silkworm moves to 
the pupal phase, where it remains for 14 days, inside the 
cocoon. Finally, it turns into a moth, which lives for seven 
days.33-35 Figure 1 illustrates these steps.

Figure 1 - Representation of the Bombyx mori life cycle. 

Figure 2 - Representative scheme of the composition of silk threads. 
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edible (so it can be used in the food industry),38-40 it ori-
ginates from natural sources, it is inexpensive,6 and it has 
outstanding mechanical properties. Indeed, it is one of 
the most resistant natural fibers,1,33,41 which allows it to 
be used in several other applications, inside or outside 
the textile industry. A considerable part of the cocoons 
produced during sericulture is discarded.7,8,42,43 There-
fore, in the last decades, hundreds of studies aiming at 
reusing these cocoons in the textile industry itself or in 
the production of “less noble” products have been con-
ducted. An example of such studies is the Brazilian pro-
ject “Casulo Feliz”, created by the zootechnician Gustavo 
Augusto Serpa Rocha in 1988.44 Alternatively, the discar-
ded cocoons can be employed to develop cutting-edge 
technology based on isolation of the protein constituents 
of the cocoons.1,2,12-14,45,46

Fibroin, the major component of silk: extraction, 
structure, and properties

Although the history regarding the use of silk as sutu-
res is centuries old,6,11 it was in the mid-1940s that fibroin 
derived from cocoons aroused scientific interest. In 1947, 
the first academic article reporting the use of fibroin out-
side the textile industry was published.47 Since then, the 
possibilities of using this protein have extended to seve-
ral areas, such as tissue engineering.4,48 Fibroin has also 
been employed in the development of various types of 
biomaterials12,13 and photonic devices14. Today, it is one of 
the most applied natural fibers.

Compared to fibroin, sericin is still less often used 
due to biocompatibility and hypersensitivity issues.6,49 
However, many studies have investigated the application 
of sericin in other areas50 including the development of 
compounds with antioxidant and bactericidal proper-
ties.34,40,51 Sericin has also been employed in the pre-
vention against UV rays,52 in the composition of cosmet-
ics,53 and in the food industry.40 This protein is commonly 
known as the “binding” protein. It involves and assem-
bles the fibroin fibers, thereby providing the cocoon with 
a structure.32 Because it is a globular protein consisting 
predominantly of the amino acids serine (Ser) and aspar-
tic acid (Asp) (Table 1), sericin is highly hydrophilic and 
is highly soluble in hot water,52 which allows it to be re-
moved from silk during the “degumming” process – the 
procedure through which fibroin is extracted from the silk 
threads, to give a solution of this fibrous protein.2 

While the textile industry disassembles the cocoon 
built from a single thread to produce fabrics, degumming 
is a “reverse engineering” process that starts from the 
cocoon, to return to the original components, proteins 
and water, present in the silkworm sericigenic glands and 
which are spun to produce the cocoons.54,55 This protein 
splitting process comprises four steps: (I) separation of 
proteins and extraction of fibroin from the silk threads; 
(II) fiber dissolution; (III) dialysis to remove excess salt 

The textile industry is interested in the cocoons. Star-
ting from the egg, the estimated time for obtaining them 
is approximately 45 days. These cocoons consist main-
ly of two proteins: fibroin (~70%), which belongs to the 
fibrous class and provides the cocoons with resistance, 
and sericin (~30%), which belongs to the globular class 
and provides the cocoons with protection.2 There are also 
other materials36, as shown in the scheme represented in 
Figure 2.

From a chemical standpoint, proteins are macromo-
lecules built up from a set of 20 amino acids. The latter 
are smaller molecules bearing two functional groups – 
carboxyl and amino – in their structure.28 In the case of 
the proteins constituting the main core of the silk thread, 
there is high percentage of glycine and alanine in fibroin 
and of sericin and threonine in sericin, as well as other 
subunits (in smaller proportions)33. Please see Table 1.

Table 1- Percentage of amino acids constituting the pro-
teins present in the silk thread.33

AMINO ACID % in fibroin % in sericin
Glycine (Gly) 42.8 8.8
Alanine (Ala) 32.4 4.0
Serine (Ser) 14.7 30.1
Tyrosine (Tyr) 11.8 4.9
Valine (Val) 3.0 3.1
Aspartic acid (Asp) 1.9 16.8
Glutamic acid (Glu) 1.7 10.1
Threonine (Thr) 1.2 8.5
Phenylalanine (Phe) 1.2 0.6
Isoleucine (Ile) 0.9 0.6
Arginine (Arg) 0.9 4.2
Leucine (Leu) 0.7 0.7
Proline (Pro) 0.6 0.5
Lysine (Lys) 0.5 5.5
Tryptophan (Trp) 0.5 0.5
Histidine (Hys) 0.3 1.4
Methionine (Met) 0.2 0.1
Cysteine (Cys) 0.1 0.3

Fibroin, the major component in the silk thread, is a 
protein of the fibrous class. It plays a structural role and 
constitutes the nucleus of the silk filaments, providing 
the cocoons with resistance. On the other hand, sericin is 
a protein of the globular class, which functions as a “glue” 
that unites two fibroin filaments, to form a silk thread that 
protects the cocoon.2,6,37

Thus, silk is composed almost entirely of organic 
components.33 Its production is sustainable given that 
this material can be processed in water.2 Moreover, it is 
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from the medium; and (IV) centrifugation to remove im-
purities from the cocoons itself. At the end of these steps 
(shown in Figure 3), an aqueous, viscous, and yellowish 
solution (~5% mass/volume) is obtained. This solution 
must be kept at 4 ºC and remains stable for approximate-
ly 30 days.2 

In step (I), the cocoons are heated to 100 °C in an 
alkaline solution of sodium carbonate (Na2CO3). A salt-
ing-in effect takes place – the low concentration of salts 
increases the solubility of the proteins because the sa-
line ions interact with the ionic charges of the proteins, 
increasing the effective charge and the amount of water 
molecules attached to the protein ionosphere.28 As al-
ready mentioned, the silk thread consist of two fibroin fil-
aments linked together by a natural “glue”, sericin. Seri-
cin is a globular protein and is more soluble than fibroin. 
Thus, it is solubilized, becoming loose and remaining in 

Figure 3 - Photograph of the fibroin extraction process steps. (I) A sequence of three images showing cut cocoons, 
cocoons being heated in Na2CO3 solution, and loose fibroin fibers.  (II) The first image shows dry fibroin fibers; the 
second image shows dissolved fibroin fibers after dissolution in LiBr solution. (III) Dialysis of the obtained solution. 

solution, while the fibroin fibers remain rigid.2

These now dried loose fibroin fibers undergo dis-
solution (II), which can be carried out in the presence 
of various organic solvents and/or aqueous solutions2 
such as CaCl2-EtOH-H2O,56,57 Ca(NO3)2-MeOH-H2O,58 
LiBr-EtOH-H2O,41 LiSCN-H2O,59 NaSCN-H2O,60  and Li-
Br-H2O.2 The latter is the most commonly used system. 
In this case, LiBr acts as a chaotropic agent. At high con-
centration in aqueous solution, LiBr “removes” the wa-
ter molecules surrounding the fibroin molecules, thus 
affecting the stability of the native conformation of these 
macromolecules, weakening the hydrophobic effect.4,28

After the fibroin fibers are completely dissolved, a 
yellow viscous gel is obtained. This gel is then dialyzed 
(III) against ultrapure water for 48 h. After this period, the 
solution is centrifuged (IV) at 3500 rpm, to remove impu-
rities.2
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Structurally, fibroin consists of two chains: a lar-
ger one, with ~325 kDa ((H) -chain), and a smaller one, 
with ~25 kDa ((L) -chain)6. These chains are linked by a 
disulfide bond formed between two cysteine   residues,71 
leading to an HL complex, which at the same time is also 
non-covalently linked to a P25 glycoprotein (~25 kDa). 
The whole structure of this protein62-64 was first charac-
terized by Marsh in collaboration with Corey and Pau-
ling in 1955.65 The high-molar-mass region underlying 
the tension properties of fibroin is a crystalline structure 
composed by repetitions of the amino acids that build up 
its primary structure (in that order Gly - Ala - Gly - Ala - 
Gly - Ser) and which may have the so-called silk I and silk 
II. Silk I is a hydrophilic, less crystalline region consisting 
of alpha-helix structures or random coil; silk II is hydro-
phobic and is more crystalline due to the presence of an-
tiparallel beta-leaves.10 Silk I can be converted to silk II 
by specific treatment with methanol. In addition to these 
two regions, a small and unstable structure, known as 
silk III, may occur at the air/water interface of the fibroin 
in solution, but its structure has been less explored.66 
The low-molar-mass chain accounting for chemical re-
sistance and moisture retention is an amorphous, hydro-
philic structure that does not present the repetition of the 
amino acids that build up the primary structure.62-64,67-71 

Fibroin comprises 5263 amino acid residues; Gly, Ser, 
and Ala are the main constituents of the primary struc-
ture, whereas other residual amino acids exist in smaller 
proportions,72,73 as shown in Table 1.

Because fibroin belongs to the fibrous class and 
presents many hydrophobic amino acid residues in its 
structure, it is a water-insoluble protein.33 As mentioned 
previously, this protein has unique characteristics that 
allow it to be used in several areas. Among these charac-
teristics, its biocompatibility,6,12,13,48 biodegradability,15 
resorbability,16 high mechanical resistance,1,74 relative 
stability to the environment it occupies,6 flexibility,75 abi-
lity to self-crystallize62 and to self-organize,2 structural 
functionality,2,76,77 possible coordinative environment for 
ions or molecules of interest,78, permeability to vapors of 
interest,80 transparency in all the visible spectrum, smoo-
th surface, and variable refractive index81-83 stand out.

After sericin is completely removed from the silk thre-
ad, the resulting fibroin solution can be used to prepare 
different materials, which is promising for several appli-
cations. Some designs are illustrated in Figure 4 and in-
clude gels, fibers, films, microspheres, tubes, and spon-
ges. The time required to obtain these materials varies 
from one to five days,2 depending on the method.

Figure 4 - Scheme of the numerous shapes that can be obtained from the fibroin solution. The number of days that 
are necessary to obtain each shape is counted only after the fibroin solution is prepared.2
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The fibroin crystalline structure, and hence its mechanical 
properties, can be modified during the preparation of these 
materials, by altering the fibroin concentration in the solu-
tion, the solvent used during treatment (water or alcohols), 
and the treatment temperature84 and by adding other com-
ponents or creating/distributing pores.2,4,6,12,14,76,85,86 The thi-
ckness and degradation time for materials such as films and 
tubes can be controlled by changing the fibroin concentra-
tion in the solution used during the preparation.2,87 Through 
a simple drying process in ambient conditions, insoluble 
materials, like films, can be obtained – beta sheets (con-
version of silk I to silk II) are formed as a result of water 
removal. However, the materials obtained by this method
a simple drying process in ambient conditions, insoluble 
materials, like films, can be obtained – beta sheets (con-
version of silk I to silk II) are formed as a result of water 
removal. However, the materials obtained by this method 
are brittle, but this can be improved through treatment 
with hot water or methanol.4,76,88-90 Treatment with water 
vapor only affords more flexible materials that degrade 
within a shorter time than materials treated with metha-
nol, a widely used method for preparing materials of dif-
ferent shapes, such as spheres and fibers.2 In addition to 
the previously mentioned films and tubes, because me-
thanol can induce fibroin crystallization, a larger number 
of beta-sheet structures arise.76,89,90 In general, treat-
ments with water vapor only give a smaller amount of beta 
sheets than treatment with alcohol, such as methanol. A 
small number of beta sheets results in less crystalline, 
more malleable, and softer materials, whilst an increase 
in the number of these structures affords more crystalline 
and rigid materials.76

Besides these treatments, the mechanical proper-
ties of fibroin can be improved by adding other com-
ponents;91-95 for example, fibroin blends with acrylic 
polymers,60 polysaccharides,96 collagen,97 and sodium 
alginate,98 among others, can be obtaimed.99,100 Porous 
materials can also be achieved by using polyethylene 
oxide (PEO)2, thus creating matrixes with defined poro-
sity and modified surface properties.101-103 Another factor 
that can influence the properties of the resulting mate-
rials is the age of the cocoons that are used to obtain the 
fibroin solution, as demonstrated by Ramirez and colla-
borators.104

Film is one of the simplest forms into which fibroin can 
be molded.  To prepare a film, the typical feature of pro-
teins must be considered: these macromolecules tend to 
self-organize as they spread over a surface. Therefore, 
they acquire the shape of the surface after the solvent 
present in the protein solution, in this case water, is eva-
porated under ambient conditions (dry casting).2,4,105 In 
this way, non-patterned or patterned fibroin films can be 
achieved by changing only the substrate where the film 
is prepared. The choice of substrate will depend on the 
target application given that this film will “load” the cha-

racteristics of the substrate. Apart from this preparation 
method involving manual deposition, these materials can 
be obtained by other techniques, such as layer-by-layer 
(LbL) deposition,74,86,106-108 which produces ultrafine fi-
broin films, as well as spin coating,109,110 Langmuir-Blod-
gett (LB) process,66,111,112 and others.4

Fibroin tubes can also be obtained by a simple me-
thod like dip coating, by immersing a template in a solu-
tion with high fibroin concentration, as described by Ro-
ckwood and collaborators.2 After immersion, the system 
must be homogenized and placed in contact with metha-
nol, which can induce formation of beta-sheet structures 
and stiffen the material.4,76 After treatment, the templa-
tes with the solution are dried at room temperature. This 
method enables tube thickness to be controlled through 
control of the fibroin concentration in the solution and the 
number of layers deposited on the template;2,115 further-
more, porous tubes can be created.113 Another methodo-
logy involves spinning gel (gel spinning).102

Wenk and collaborators114 obtained fibroin micros-
pheres by a method that uses mild conditions and a vi-
brating mouthpiece. In this system, the fibroin solution 
is added with a syringe and ejected in the form of drops 
by action of the mouthpiece with controlled vibration and 
frequency. The drops are poured into a reservoir contai-
ning liquid nitrogen and solidify upon contact with it. 

Spherical fibroin materials can also be prepared by 
other methods. For instance, fatty acid lipids (DOPC: 
1,2-Dioleyol-sn-glycerol-3-phosphocholine) can be 
employed to encapsulate the aqueous fibroin solu-
tion. The fatty acid lipids can be in the pure form or in 
the presence of a molecule of interest, which act as a 
template. After vesicles are generated, the lipid can be 
removed, and the resulting spheres are resuspended. In 
the case of DOPC, which is soluble in methanol and can 
stiffen fibroin, methanol is used to remove the lipid.2,115 
Phase separation between the aqueous fibroin solution 
and another polymer, such as PVA (polyvinyl alcohol), is 
another useful method that is simple and dismisses the 
use of other solvents.2,116 

Fibroin fibers are generally obtained by electrospin-
ning, a process that affords materials with large surface 
area and reduced diameter.117-122 This methodology is 
widely employed due to the simplicity of the experimental 
electrical force apparatus – it basically consists of three 
components, syringe, high voltage source, and collector 

– not to mention its high efficacy and low cost.2,117

Fibroin is also widely used to produce three-dimen-
sional scaffolds with controlled morphology and porosi-
ty. These scaffolds can be obtained from gel, hydrogels, 
or sponges. Sponges can be achieved by adding and 
subsequently removing salts from the fibroin solution 
in aqueous medium; pore size can be controlled.2,123 In 
addition to this aqueous method, sponges can also be 
prepared by using organic solvents, like the alcohol HFIP 
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(1,1,1,3,3,3-hexafluoro-2-propanol).2,124

Finally, hydrogels can be prepared by a series of me-
thods involving decreasing the pH value of the medium,125 
sonication126, or application of an electric current.127 In 
all cases, the material is produced in a simple and fast 
way, and the choice of method will depend on the target 
application.2 Nogueira et al.128 demonstrated that these 
materials can be achieved by fibroin solution dialysis at 
different temperatures, without the need for further tre-
atments, constituting another simple and effective route 
that affords promising structures for biological applica-
tions. 

Applications
Because fibroin provides positive responses due to 

its biocompatibility,2,12,13,48 among other properties, it 
has been widely explored for the development of diverse 
biomaterials in the medical field for decades;12,13 moreo-
ver, it has promising use in the development of photonic 
devices.14 Among the possible applications of this natu-
ral polymer, we can mention its use in drug delivery sys-
tems,115,130-135 as scaffold in tissue engineering for repair of 
tissues (such as cornea136-140 and vascular102,113,141-144 and 
bone145-154 tissues), and as dressing for healing skin le-
sions.155-158 Other application areas include cancer diag-
nosis and treatment,159 photodynamic therapy,160 enzyme 
immobilization,161-166 photonic devices,16,167 lasers,168-174 
biosensors,175-180 waveguides,72,181,182 fuel cells,183 energy 
storage devices,184 and materials with antithrombogenic 
properties.185,186 

Drug delivery
Controlled drug delivery using implantable biopoly-

mers offers numerous advantages over conventional 
methods. Advantages include controlled and constant 
administration at the required therapeutic rate without 
peaks or valleys.187,188 The release rates are determined 
by the vehicles themselves. The vehicles must be bio-
compatible and amenable to large-scale production, and 
they must work for days or even years.187 In this scena-
rio, carrier materials based on fibroin stand out for their 
biocompatibility, excellent mechanical properties, con-
trolled degradation through crystallinity control (quantity 
of beta-sheet structures), ability to immobilize enzymes, 
and other therapeutic properties. Besides that, they can 
be processed in mild conditions and molded into diffe-
rent shapes.129-135

Through the most diverse forms, fibroin-based ma-
terials can be used to encapsulate/release a series of 
molecules and bioactive compounds. For example, Wang 
and colleagues prepared carrier microspheres in the 
presence of lipids and subsequently treated them with 
methanol and sodium chloride solution, to obtain ma-
terials with different surface characteristics, for different 
applications.115 

Moraes and collaborators prepared fibroin hydrogels 
in the presence of diclofenac molecules for controlled 
delivery of this compound. They dissolved the drug in 
water or ethanol and later added it to fibroin, to obtain 
carrier hydrogels. In the case of the drug dissolved in wa-
ter (SF-H2O), hydrogel formation took three days, but this 
time decreased to 10 minutes for the drug dissolved in 
ethanol (SF-EtOH), confirming that ethanol accelerated 
the gelling kinetics. The authors studied the delivery pro-
file of the drug in the two cases, under the same condi-
tions. For SF-EtOH, drug release was faster at the begin-
ning of the experiment and reached equilibrium after 10 
h, whereas equilibrium was reached after 5 h in SF-H2O. 
The data suggested that hydrogels containing diclofenac 
dissolved in ethanol presented more sustained control-
led delivery because the SF-EtOH hydrogel emerged 
more rapidly and in the presence of well-organized be-
ta-sheet structures, resembling cross-linking processes, 
thereby resulting in more controlled diclofenac release.132

Among the possible applications of carrier systems,   
tissue engineering to induce the growth of tissues like the 
cornea and vascular, bone, and skin tissues stand out.133

Through the most diverse forms, fibroin-based mate-
rials can be used to encapsulate/release a series of mo-
lecules and bioactive compounds. As an example, Wang 
and colleagues demonstrated the preparation of carrier 
microspheres in the presence of lipids and subsequent 
treatment with methanol and sodium chloride solution, 
where it was possible to obtain materials with different 
surface characteristics, widening the use for different 
purposes115. 

Moraes and collaborators have shown the preparation 
of fibroin hydrogels in the presence of diclofenac mole-
cules with potential use in controlled delivery of this com-
pound. In this research, the drug was dissolved in water 
and in ethanol, and later added to fibroin to obtain carrier 
hydrogels. As for the drug dissolved in water (SF-H2O) 
the time required to obtain the hydrogel was 3 days, while 
in the case of dissolution in ethanol (SF-EtOH) the gela-
tion time decreased to 10 minutes, confirming the effect 
of acceleration on the gelling kinetics by ethanol. The de-
livery profile of this medication in the two mentioned ca-
ses was studied under the same conditions as shown in 
Figure 7. In Figure 7 is also possible to notice that for SF-

-EtOH the drug release occurred more quickly at the be-
ginning of the experiment and reached equilibrium after 
10 h. On the other hand, in SF-H2O the equilibrium was 
reached after 5 h. According to the researchers, the data 
presented suggest that hydrogels containing diclofenac 
dissolved in ethanol present a more sustained controlled 
delivery compared to those obtained with the drug dis-
solved in water. This can be explained by the fact that the 
SF-EtOH hydrogel formation occurred more rapidly and 
in the presence of well-organized beta-sheet structures, 
similar to what occurs in cross-linking processes, thus, 
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resulting in a more controlled release of this medication132

Among the possible applications for carrier systems, 
the most studied and explored is in the area of tissue 
engineering in inducing the growth of the most diverse 
types of tissues such as the cornea, vascular, bone, and 
skin tissues133.

Tissue Engineering
Tissue engineering, a sub-area of   biomedical engine-

ering, is an interdisciplinary area that gathers knowledge 
from several fields to develop systems that can act in the 
maintenance, restoration, or performance improvement 
of different organs and tissues. Therefore, this sub-area 
requires the use of biocompatible matrixes that can re-
ceive bioactive cells or molecules and later be implanted 
at the destination site, where they adapt to the microen-
vironment and mimic the damaged area. The resulting 
arrays are commonly called “scaffolds”. Apart from the 
minimum biocompatibility requirement expected for the-
se materials, their degradation time along with the rege-
neration time of the tissue in which they are inserted also 
determines their application. In the search for biomate-
rials that can act in the reconstruction of tissues, structu-
ral proteins such as collagen, elastin, and albumin stand 
out for being natural and easily found components.2,4,6 In 
this context, silk fibroin has been increasingly explored 
due to its elasticity properties, mechanical resistance, 
controlled biodegradation, and biocompatibility.4,189-196

The most reported tissues for potential regenerative 
treatments using fibroin-based materials, whether pure or 
in the presence of other compounds,153 are bone (36%),145-

154 cartilaginous (17%),197-203 vascular (10%),102,113,141-144 and 
cutaneous (5%) tissues,155-158 as well as cornea (2%)136-140, 
as described by Kasoju and Bora in 2012.189 

Compared to other types of tissues, fibroin has been 
mostly employed in bone repair.189 Bone tissue is made 
up mainly of hydroxyapatite and collagen, and it can be 
recovered by inducing osteoblast cell proliferation. Since 
the role of fibroin as a biomaterial was first reported in 
1995,204 many studies have been carried out, and bone 
regeneration using this material in the form of fibers ob-
tained by electrospinning,152 of hydrogels,146-149 of porous 
membranes,151 of films in the presence of hydroxyapati-
te,145 as well as functionalized with other molecules205,206 

has already been successfully demonstrated.
Two decades ago, Sofia and collaborators205 reported 

images of the systems they prepared. The images were 
obtained by calcein fluorescence and showed maximum 
calcification in the fibroin and RGD (peptide sequence) 
substrate after four weeks. These results supported the 
concept that fibroin can induce bone tissue growth, es-
pecially when it is functionalized with molecules of inte-
rest.

Skin dressing

Due to their biocompatibility, low immunogenici-
ty, and nontoxic and non-allergenic nature, biopolymer 
dressings have been widely used in the treatment of skin 
lesions.207 The mechanism through which these lesions 
are recovered occur in different parts of the skin and is 
complex: it involves various types of cells and requires a 
material with good adhesion.208 Therefore, materials that 
can incorporate and carry molecules, like drugs, in their 
structure and which can be molded in different ways have 
gained prominence in this area.207 Fibroin-based mate-
rials have been investigated as dressings for skin wou-
nd healing since the 1990s. These materials are effecti-
ve substrates for proliferation of adherent cells and can 
be an alternative to replace collagen.209 Indeed, studies 
have shown the effectiveness of materials based on pure 
fibroin210,211 and of materials obtained through previous 
treatments and as blends in the presence of other com-
pounds.155-158

Vasconcelos and collaborators prepared fibroin and 
elastin compounds via freeze-drying and proved that 
they effectively induced the recovery of wounds caused 
by skin burns. The combination of the self-organizing 
properties of fibroin with elastin resulted in a system that 
mimicked the extracellular matrix and was able to accele-
rate wound healing. According to the authors, treatment 
with a material composed of 50% fibroin and 50% elastin 
provided the fastest improvement.158 

Enzyme immobilization
Silk fibroin started being used as a support for enzyme 

immobilization around 1977.212 These systems can be ea-
sily obtained, not to mention that they increase enzymatic 
activity and stability.161 Furthermore, silk fibroin can be 
submitted to different treatments, to optimize enzymatic 
stabilization through a low-cost material with interesting 
biological properties.163,213,214 Enzymes can be immobi-
lized on fibroin substrates by methods such as covalent 
bond formation,215 adsorption,12 and encapsulation,164-166 
among others.162

Many enzymes have been immobilized on a fibroin 
substrate; e.g., HRP (Horseradish peroxidase),216 gluco-
se oxidase,217 lipase,218 and alkaline phosphatase.219 In a 
paper published in 2015, Tao et. al.220 used a colorimetric 
reaction to demonstrate that the HRP activity was main-
tained after the enzyme was added to the fibroin solution. 
This led to a functional ink for 3D printing, which would 
have been impossible to achieve with the enzyme printed 
in isolation.

Systems comprised of enzymes of interest and fibroin 
can be used to develop materials for numerous applica-
tions in the medical162 and industrial areas.165 One exam-
ple is their use as biosensors for diagnosis.14,81

Electronic and Photonic devices
In the field of electronics and photonics, biopolymer 



Silk: history, obtaining, structure and properties of an...

36 INTERNATIONAL JOURNAL OF ADVANCES IN MEDICAL BIOTECHNOLOGY - IJAMBVol. 4 N.1, 2021

films have been used to obtain flexible devices.75 This field 
requires materials that can be applied in unconventional 
interfaces, such as curvy and soft interfaces, to which 
traditional devices are unable to adhere. Indeed, electro-
des that can intimately and non-invasively integrate with 
these surfaces offer important opportunities for disease 
treatment and diagnosis.16,75 In this regard, fibroin has 
been extensively studied and stands out against other 
materials thanks to its unique properties, which include 
being mechanically robust1,14,74 and transparent throu-
ghout the visible spectrum, presenting smooth surface 
and variable refractive index,81-83 and being susceptible 
to physical changes in its structure.76,77 All these charac-
teristics allow the preparation of passive or  active devi-
ces75 based on pure fibroin16 or fibroin in the presence of 
other components,167 to provide materials like supports 
for electrodes,16,221 lasers,168-174 biosensors,175-180 wave-
guide,83,181,182 fuel cells,183 and energy storage devices.184

Kim and collaborators built an electrode consisting of 
a chip supported on an ultrathin and resorbable fibroin 
substrate. To this end, they obtained a pure, smooth, and 
thin film in which the chip was placed. They observed that 
tissue adhesion improved with decreasing device thi-
ckness. The chip could be reabsorbed by the body within 
a programmed time because fibroin can be undone in 
days, months, or even years depending on the treatment 
to which it is submitted.16 This work introduced a concept 
that could be extended to other areas: the preparation of 
electronic devices with biodegradable components as an 
alternative to replace some types of plastics.

 Silva et al.172 took advantage of the ability of fibroin 
to copy the characteristics of the substrate to which it 
is added2,14 to prepare a laser system based on the DFB 
(distributed feedback grating) mechanism by using a 
commercial DVD as substrate. They poured the fibroin 
solution on the surface of the DVD and let it dry. The re-
sulting film displayed the diffraction pattern of the DVD. 
This pattern is what causes amplification in this type of 
laser system, thus being an example of an active device 
based on fibroin in the presence of nanoparticles and dye 
incorporated into the protein structure.172

A dielectric material with thickness (l) and refracti-
ve index (n1) and that can support wave propagation is 
known as a waveguide. Its refractive index (n1) must be 
different from the refractive index of the material on which 
the guide is supported (n2). In a study published in 2015, 
researchers obtained biocompatible waveguides from fi-
broin fiber (n1 = 1.54) encapsulated with fibroin hydrogel 
(n2 = 1.34) and demonstrated that the materials can gui-
de light in tissues by means of a robust system, thereby 
allowing great advances in the use of light in therapy or 
image acquisition.83,181

The fibroin protein structure is also of great interest in 
the development of photonic devices. Among the amino 
acids that make up such a structure are the aromatic ami-

no acids tryptophan (Trp), tyrosine (Tyr), and phenylalani-
ne (Phe) (Table 1), which are commonly employed as flu-
orescent probes for interpretation of the protein structure 
(conformation, dynamics, and molecular interaction). In 
the case of fibroin, Trp stands out because its fluores-
cence is sensitive to the surrounding environment. This 
amino acid residue, with broadband emission between 
300 and 400 nm, can sensitize lanthanide ions by energy 
transfer, populating the emitter levels more efficiently, as 
demonstrated in a study published in 2018.78 When the 
emitting levels are more efficiently populated, the emis-
sion of these ions intensify, a widely explored phenome-
non in photonics.

Understanding how the physicochemical properties 
of fibroin affect the spectroscopic properties of lantha-
nide ions can be a strategy for the development of a new 
generation of photonic devices, such as biocompatible 
and biodegradable sensors with high transparency in 
the visible spectral region. In a recently published stu-
dy, thin, highly transparent films consisting of fibroin and 
a europium ion (Eu3+) complex, produced by immersion 
under controlled conditions, were presented. The study 
showed the highly intense emission typical of Eu3+ com-
plexes and the dependence of the intensity of the 5D0 
→ 7F2 transition on the concentration of ammonia vapor, 
thus demonstrating the possibility of using this system as 
a photonic vapor sensor.180

Final considerations
Silk fibroin has been the focus of several studies on the 

development of the next technological advancements in 
the fields of medicine, photonic devices, energy conver-
sion and storage, 3D printing, and electronic devices, for 
instance. This is because this protein has properties such 
as mechanical robustness, smooth surface, high transpa-
rency (> 95%) throughout the visible region of the spec-
trum, and high moldability. Therefore, this old and amazing 
material remains at the cutting-edge of knowledge. Its 
properties can be improved by further biochemical func-
tionalization, which may provide it with greater versatility 
for the development of new devices through incorpora-
tion of different ions or molecules in the protein structure.

In this way, combining the mechanical and optical 
properties of fibroin with the multifunctionality of lantha-
nide ions could be an interesting strategy to develop new, 
distinguished photonic materials. However, the proper-
ties resulting from lanthanides in this protein host have 
not been fully exploited yet, which opens a wide field for 
future studies.

Sometimes, fibroin-derived materials do not outper-
form other inorganic materials. Nevertheless, progress 
in the synthesis of new composite materials from inor-
ganic particles and fibroin can overcome some drawba-
cks of pristine fibroin, leading to new materials for solar 
cells, 3D print ink, and sensors and to new biomaterials 
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that can be developed on the basis of a green production 
strategy.

Finally, the silk cocoons that have been produced by 
the caterpillar Bombyx mori for millennia and which have 
been employed for fabric production had their history 
changed when their proteins were separated. Fibroin has 
now become the focus of several research groups and is 
key for the development of new materials.
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