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Abstract: The purpose of research in the biomaterials field is to produce new materials with physical and chemical properties close to the tissue to 
be replaced with minimal toxic response to the foreign body. Among the various metallic materials, titanium and its alloys have this great combination 
of properties. The most promising alloys are those with niobium, molybdenum, tantalum, and zirconium as alloying elements added to titanium. 
Thus, this kind of alloys integrate a new class of alloys without aluminum and vanadium (which cause cytotoxicity) and have a low modulus of 
elasticity (below 100 GPa). The objective of this work is to analyze the structure and microstructure of a niobium-based alloy, Ti-50wt%Nb. This 
alloy was produced in an arc-melting furnace with an inert atmosphere of argon gas. After melting, the samples were characterized by density, 
X-ray diffraction, scanning electron microscopy, and hardness. The X-ray diffraction data shows the peaks corresponding to the beta phase 
(with body-centered cubic crystalline structure), corroborated by scanning electron microscopy images. The value of the lattice parameter of the 
body-centered cubic crystalline structure was 3.2868 Å. 
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Introduction 
Much research is being developed to characterize the 

mechanical and biochemical behavior of beta (b) titanium alloys, 
depending on the processes of obtaining and thermomechanical 
treatments of these alloys, which greatly influence their properties 
[1, 2]. Among several Ti-based alloys, a binary composition like 
Ti-Nb is studied for application in biomaterials [3-6].  

The first studies made on the characterization of Ti-Nb alloys 
were made by Lee et al. (2002) [7], where the authors analyzed the 
microstructure, mechanical properties, and corrosion resistance 
of these alloys with Nb content up to 35 wt%. However, Zhang et 
al. (2001)[8] studied the thermodynamic properties of the Nb-Ti 
system first. They have been evaluated these properties by using 
a regular solution model to describe the Gibbs energies of various 
phases, including both equilibrium and metastable phases. With 
the thermodynamic parameters obtained in this work, authors 
discuss the possible occurrence range of w phase. The ω 
phase is a metastable phase and exhibits hexagonal crystalline 
structure or depending on the content of alloying elements [9]. 
Several studies were made to characterize Ti-Nb alloys with 
the coexistence between a and b phases regarding structure, 
microstructure, phase composition, mechanical properties, and 
corrosion resistance. These alloys have Nb content below 40 wt% 
[4, 10-22]. According to Ozaki et al. [23], above 40 wt% of Nb, only the 
presence of b phase is observed.

Martins et al.[24] studied Ti-xNb alloys (x = 45 and 50% wt.) 
produced by mixing powder elementary elements, followed by 
uniaxial and cold isostatic pressing with subsequent densification 
by sintering. The phase composition of sintered samples was 
characterized by X-ray diffraction (XRD) measurements and 
scanning electron microscopy (SEM). The hardness was obtained 
by Vickers indentation, specific mass by the Archimedes method, 
and elastic modulus by resonance ultrasound method. The 
sintered samples presented only the b phase, higher hardness, 
and lower elastic modulus compared to Ti6Al4V alloy and 

experimental specific mass value near theoretical specific mass.
Bonisch et al.[13, 14] studied thermal stability and latent heat of 

Nb-rich martensitic Ti-Nb alloys.  For biomedical applications, 
alloy compositions with relatively low martensitic transformation 
(MT) temperatures are more attractive. The latent heat, elastic 
and irreversible energy contributions of the thermoelastic energy 
balance are quantified dependent on Nb content in the remaining 
parts. All energy contributions decrease with increasing Nb 
content, and the latent heat becomes very small (< 5 J/g) for the 
Nb-richest martensitic compositions.  

Pereira et al.[25] studied Ti-xNb alloys (x = 50, 80, and 90 
wt%). This work compared the influence of niobium on the alloys’ 
mechanical properties, corrosion resistance, and cell viability for 
biomedical application.  All studied alloys have body-centered 
cubic crystalline structures (b phase). The Ti-50Nb alloy showed 
the best values of elastic modulus among all analyzed alloys. 
Corrosion resistance, wettability, and cellular viability were 
analyzed, too. The results of this paper suggest a Ti/Nb ratio 
close to 1 for Ti-50Nb, showing favorable characteristics to apply 
in orthopedic devices. 

The importance of Nb alloys also occurs from the strategic 
point of view for Brazil, as it holds more than 95 % of the world 
resources of this element[26].

Besides the significant number of studies in Ti-Nb alloys, 
research on the influence of Nb on the structure of Ti-based 
alloys using Rietveld’s Method was not found in the literature.

The Rietveld’s Method[27] is a method that allows the 
refinement of crystalline structures, with X-ray or neutron 
diffraction data, using the powder method. The determination 
of the proportion of the phases present in a sample is also 
exemplarily performed with the Rietveld’s Method [28], and no 
calibration curve is required. Phase quantification is obtained 
by the relative intensity between the diffraction patterns of each 
phase.  The use of the Rietveld ́s Method allows simulating the 
diffractogram with the present phases. 
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Martins Jr and Grandini[29] applied these two methods to 
study the influence of the addition of oxygen in the Ti-15Mo alloy, 
where it was observed that after successive rapid cooling for the 
introduction of oxygen, there was the formation of the α’, which 
was quantified in percentage by weight in the microstructure by the 
Rietveld´s Method. In this paper, the size of the lattice parameters 
and the quantification of crystalline phases were analyzed. 

Thus, the objective of this paper was to determine some 
structural parameters and phase quantification for the Ti-50Nb 
alloy.

MATERIALS AND METHODS
The samples used in this paper were alloys with 50% in weight 

of Nb. This alloy was produced in the Laboratório de Anelasticidade 
e Biomateriais da UNESP/Bauru, using an arc-voltaic furnace. The 
characterization of the samples was performed through semi-
quantitative chemical analysis, density measurements, X-ray 
diffraction and, scanning electron microscopy. The samples were 
analyzed in the “as-cast” condition. Further details on chemical, 
structural and microstructural characterization can be obtained 
in Martins Jr et al.[30].

After melting were obtained ingot with a mass of 60 g and 
irregularly shaped (about 8 cm long by 2 cm wide). The mass 
variation was less than 0.1 g after melting.  The chemical 
composition analysis was obtained by energy dispersive 
spectroscopy (EDS), using an Oxford, Inca model equipment.  
Density measurements were carried out with an Ohaus Explorer 
model analytical balance and a density determination kit, using 
the Archimedes’ Principle. Ten measurements were made in each 
sample.

The samples were filed to obtain about 3.0 g of powder to fill 
the sample’s support to perform the X-ray diffraction tests. After 
this step, the powders underwent magnetic separation using an 

AlNiCo magnet to remove iron fragments from the hand-file. The 
metallic powder was dispersing over the sample holder with care 
to avoid preferential orientation, which may cause interference in 
the quantitative analysis of the diffractogram. It affects the intensity 
of the peaks. The X-ray diffraction measurements were carried out 
using a Rigaku D/Max 2100/PC equipment with radiation Cu-Ka of 
l = 1.544 Å, a fixed time mode with a step of 0.02, a permanence 
time of 1.6 s, and a scan of 10 to 100º.

X-ray diffractograms were analyzed by Rietveld´s Method 
using the General System Analyzer Structure (GSAS) program [31]. 
The sheets used to obtain crystallographic information were no. 
644489-ICSD form for phase from the Inorganic Crystal Structure 
Database (ICSD) [32].

For the microstructural characterization, it was used a Carl 
Zeiss microscope, model EVO-LS15. The etching used to reveal 
the microstructure of the samples was a water solution of 20% HF 
and 5% HNO3

[33], with an attack time of 30 seconds.
Microhardness tests were performed on a Shimadzu 

microdurometer HMV model-2, with a load of 1.96N for 60 s, 
based on standard technical ASTM-E384[34].

Results and Discussion
The chemical composition of the Ti-50Nb alloy is presented in 

Table 1 and shows the main elements found in the semi-quantita-
tive chemical analysis of the samples using the EDS technique. An 
excellent agreement with the stoichiometric value for the amount 
of Ti  and Nb elements can be observed.  This slight difference 
to the nominal value can be explained by minor variations in Ti 
and Nb concentration along the sample surface. It is important to 
remember that the EDS technique is semi-quantitative [35]. Table 
1 presents the density values obtained experimentally, using the 
Archimedes’ Principle [36]. 

The values obtained for the density of the Ti-50Nb alloy are very 

ρ

 

Table 1. Semi-quantitative chemical elements obtained by EDS and density results for as-cast Ti-50Nb alloy.

Figure 1 - X-ray diffractogram for the as-cast Ti-50Nb alloy. 
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close to the theoretical value, which is indicative that the nominal 
composition of the sample was satisfactorily obtained [37].

The results of X-ray diffraction measures for as-cast Ti50Nb 
alloy are shown in Figure 1.Similar results were obtained by Martins 
et al. [24] and Pereira et al. [25]. It can be observed that the diffraction 
patterns presented peaks typical of the b phase, with body-cen-
tered cubic structure [38].  

 From X-ray diffractograms, a series of information can be 
obtained. The position of the peaks provides the information on the 
dimensions of the unit cell, the crystalline system, and identification 
of the crystalline phases; the intensity of the peaks provides the 
contents of the unit cell and allows the qualitative analysis of the 
phases, while the shape and width of the peaks are related to the 
size of crystallites and defects in the crystalline structure [39]. For 

Ti-15Mo alloy, in three processing conditions (after melting, after 
swaging, and after stress relief heat treatment), the variation in 
peak intensities was observed. It was attributed to the increasing 
in a’ phase concentration and parameters such as temperature and 
cooling time influenced the formation of this phase [40].

Figure 2 shows the results of X-ray diffraction for as-cast Ti-
50Nb alloy, analyzed by the Rietveld´s Method, where it is possi-
ble to observe the optimal agreement of the calculated diffraction 
and that obtained experimentally, showing that refinement was 
performed in a very satisfactory way [29, 30, 41]. The diffractogram 
was analyzed only with one crystalline phase (b phase), as it was 
the best fit using Rietveld’s Method. Thus, we indicate that it was 
impossible to identify the w phase in the studied sample based 
on the X-ray diffraction analysis. 

Table 2 shows the main results of the analysis by the Rietveld 

Figure 2 - X-ray diffractogram analyzed by Rietveld´s Method for the as-cast Ti-50Nb alloy.

Table 2. Phase quantification and lattice parameter values obtained by Rietveld’s Method.
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Method. The results presented the only b phase, which is in accor-
dance with Ozaki et al.[23], that establishes that needs more than 40 
wt% of Nb for the complete b phase stabilization. As this alloy has 
50 wt% of Nb, its crystalline structure is exclusively body-centered 
cubic (b phase).

Figure 3 shows an SEM micrograph for the as-cast Ti-50Nb 
alloy, where it is possible to observe only the presence of b phase, 
as already observed by several authors in the literature [37, 42-46]. 
In addition, in scanning electron microscopy, small and irregular 
grains characteristic of alloy can be observed in this condition.

 The ω- phase was not observed in the X-ray diffraction me-
asurements [47]. Another critical point is that when the w phase 
exists, there is a change in mechanical properties[48].  Lin et al.[49] 
reported metastable w phase and significantly higher hardness 
than in the samples that did not present w phase. It was also ob-
served in Ti-based alloys that the amount of the w phase is directly 
proportional to the hardness of the alloy. That is, a decrease in this 
phase causes a decrease in hardness[50]. In the sample of this study, 
the hardness value was 195 HV, a low hardness value, compared 
to alloys that have the presence of w phase[51].

Conclusions 
Ti-Nb binary alloy was produced with the Nb proportion of 

50% in weight, using an arc-voltaic furnace, for application in the 
orthopedic field.

X-ray diffraction measurements show that the crystalline struc-
ture of the Ti-50Nb alloy is composed only by body-centered 
cubic (b phase).  

The obtained SEM micrographs show only the morphology of 
the b phase, corroborating the results of X-ray diffraction.

The Ti-50Nb alloy presented a value of hardness around 195 
HV, which is very attractive for implants.

Based on the structural, microstructural, and hardness analysis, 

his alloy is a promising material for use as biomaterials. It pres-
ents a crystalline structure and microstructure very interesting for 
thermomechanical processing. The hardness value found facilitates 
mechanical conformation in this way facilitating the production 
of orthopedic prostheses, allowing even production with more 
complex geometry. In this way the material produced presents 
new possibilities for the orthopedic area.
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