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Abstract: Robocasting, also known as Direct Ink Writing, is an Additive Manufacturing (AM) technique based on the direct extrusion 
of colloidal systems consisting of computer-controlled layer-by-layer deposition of a highly concentrated suspension (ceramic paste) 
through a nozzle into which this suspension is extruded. This paper presents an overview of the contributions and challenges in developing 
three-dimensional (3D) ceramic biomaterials by this printing method. State-of-art in different bioceramics as Alumina, Zirconia, Calcium 
Phosphates, Glass/Glass-ceramics, and composites is presented and discussed regarding their applications and biological behavior, 
in a survey comprising from the production of customized dental prosthesis to biofabricating 3D human tissues. Although robocasting 
represents a disruption in manufacturing porous structures, such as scaffolds for Tissue Engineering (TE), many drawbacks still remain 
to overcome and although widely disseminated this technique is far from allowing the obtainment of dense parts. Thus, strategies for 
manufacturing densified bioceramics are presented aiming at expanding the possibilities of this AM technique. The advantages and 
disadvantages and also future perspectives of applying robocasting in bioceramic processing are also explored.
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Introduction
Technical Approaches – Additive Manufacturing and Robo-

casting
By definition, Biomaterials are nonviable materials, natural or syn-

thetic, that are useful towards the repair or even replacement of damaged 
body parts via interacting with living systems. The interaction of the ma-
terial with the host tissue can occur at different levels, from a minimum 
response (inert biomaterial), to an intimate interaction with the human 
cells, sometimes replacing a component of the body or even carrying 
out their functions (bioactive or resorbable biomaterials).1 As soon as 
scientists and engineers understood that it was possible to modulate 
the biocompatibility of materials for biomedical applications, novel and 
advanced manufacturing techniques were explored. Those processes 
aimed to produce multicomponent structures otherwise difficult to obtain 
using conventional routes, reduce cost and also improve performance 
after implantation. Within this context, Additive Manufacturing (AM) arises 
as a solution.

Ceramic robocasting is a direct AM technology, also named as Direct 
Ink Writing (DIW), based on the Material Extrusion process. In 2000, 
Cesarano patented and developed the technique, that consists in a com-
puter-controlled extrusion of a viscous ceramic suspension with a high 
solid loading through a small orifice creating filaments that are placed 
in a layer-by-layer deposition process.2 Figure 1 shows a schematic 
diagram illustrating this technique for obtaining of inert ceramic based 
on ZrO2-Y2O3 (Y-TZP).
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This suspension (or colloidal system) must demonstrate a suitable 
rheological behavior, undergoing a transformation from a pseudoplastic to 
a dilatant behavior when extruded in air, and following a computer-aided 
design model to form the 3D structures.3 Unlike other AM techniques, 
as Stereolithography (SLA), Digital-Light-Processing (DLP), and Fused 
Deposition Material (FDM), that usually involve binder-rich contents (above 
40% (v/v)) - which may lead to sudden outgassing and crack formation 
due to excessive shrinkage of the structure 4 - in robocasting process, 
concentrated ceramic suspensions are prepared using solid loading close 
to 40% (v/v) and dispersants/binders less than 3% (v/v).

As ceramic robocasting is not a one-step AM process, the resultant 
green body needs to undergo a debinding process to burn off the organic 
additives and a subsequent sintering process to densify the structures.5 
After drying, the materials fabricated by robocasting have a high green 
density (up to 60%), which allows almost complete densification upon 
sintering, achieving a sintered strut density near 95%.6,7,8 A recent study 
explored the rapid sintering of 3D-plotted tricalcium phosphate (TCP) 
scaffolds with the aim of getting the on-demand scaffold fabrication closer 
towards the clinical practice. The rapid and reactive pressure-less sinte-
ring of β-TCP scaffolds can be achieved merely during 10 min by applying 
fast heating rates in the order of 100 °C/min.9

Robocasting appears as a new tool to process bioceramics since this is 
a notoriously difficult material to be processed. Firstly, due to its inherent 
high melting point. Ceramics usually have complex phase diagrams, which 
indicate that after melting new phases can form as well as unexpected 

appropriate biological response, independently of the particular applica-
tion (dental prostheses or implants, intraoral pins, orthopedic).

Technologies that use of a large amount of volatile content such as 
robocasting, as ~60% of the extruded paste is composed of water and 
polymeric binder, debinding is a potentially problematic step when dense 
monolithic components are intended. 

An efficient strategy to circumvent the limitation to robocasting dense 
parts is based on the knowledge from developing similar bioceramics, 
obtained by techniques that use ceramic masses such as injection molding 
or gelcasting.17,18,19,20 These conventional molding methods are used for 
the manufacture of near-net-shape ceramics with highly complex final 
geometries. A major challenge is the controlling of the spatial distribu-
tion of the pores, and in the case of dense biomaterials, the control and 
minimization of pores and the overall porosity.

After the removal of the liquid phase or plasticizers, which is notably a 
very complex stage, considerably high relative densities can be achieved, 
depending, among other factors, mainly on the sinterability of the studied 
ceramic material. Currently, most ceramic suspensions or pastes used 
as feedstock for AM are based on significant amounts (40 to 60% v/v) of 
organic binders.21,22 The efficient removal of the remaining organics requi-
res experimental skills and acquired knowledge of the process, but many 
limitations still exist when it comes to monolithic structures that present 
a large wall thicknesses or large volumes. Thus, plasticizers should be 
adequately chosen because their evaporation rate is crucial for the process 
and it can be adapted to the specific needs of the particular AM method.

In recent years, this technique has been employed to form green parts 
of different ceramic structures such as alumina (Al2O3),

23,24 silicon carbide 

changes in their properties, even the biocompatibility. Secondly, the hi-
gh-temperature processing of ceramics can cause uncontrolled porosity 
and cracks.10 When it comes to porous materials for Tissue Engineering, 
interconnected pores are desirable to promote cellular growth and implant 
fixation, although they can decrease the mechanical properties of the final 
parts.11,12,13 Hence, a balance between mechanical properties and biolo-
gical behavior should be found for different applications.14 An advantage 
of almost all ceramic systems is that ceramic powders are commercially 
available with a wide range of characteristics. Therefore, the possibility 
of using the robocasting technique, regarding the manufacture of porous 
or dense ceramic structures with complex morphology is particularly at-
tractive when compared with the slurry-based methods, especially to 
produce biomedical devices that are aimed to meet the peculiarities of 
each patient.15,16

In this article, we aim to review the most recent contributions and 
challenges on porous and dense bioceramic structures obtained by the ro-
bocasting technique as well as the latest trends on 4D printing materials for 
biomedical applications. Some current challenges and possible solutions 
regarding the ideal system for the fabrication of dense robocast ceramic 
parts with optimal properties will be discussed with the perspective of 
the potential popularization and viability of this technique. 

Main Challenges in Robocasting
The manufacture of dense parts by robocasting encounters severe 

reservations mainly because the applications of dense bioceramics are 
associated with the need of adequate mechanical strength and reliability 
for long use periods. Also, it should be considered the requirement of an 

Figure 1 – Example of development steps of robocasted Y-TZP parts.
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(SiC),17,25 silicon nitride (Si3N4),
7,26 Yttrium-stabilized zirconia (ZrO2 / Y2O3),

8 
and some bioactive glasses. 27,28,29 Most of the reported works include 
rheological studies that allow the formulation of the ideal compositions 
of ceramic masses and their respective optimized suspensions aiming 
at particular porosity and mechanical performance of the sintered parts.

Another challenge is related to mechanical properties of robocasted 
bioceramics. Essentially, ceramics are fragile. In this sense, a strategy 
proposed to ripen mechanical properties of robocast bioceramic sca-
ffolds could be to combine the ceramic with a polymeric material. The 
fabrication of hybrid polymer/ceramic porous scaffolds with core/shell 
struts thus, appears as an interesting possibility. This strategy provides 
enhanced toughness without affecting, in principle, the bioactivity of the 
scaffold surfaces or the interconnected porosity required for bone tissue 
regeneration.30 Another possibility is creating 3D Printing Bioinspired 
ceramic composites, using the biomimetic concept. A classic example is 
nacre, which boasts a combination of high stiffness, strength, and fracture 

toughness. Various microstructural features contribute to the toughness 
of nacre, including mineral bridges, nano-asperities, and waviness of the 
constituent platelets. In this sense, it would be possible to replicate natural 
structures and build highly mineralized materials that retain strength while 
enhancing toughness.31

Bioceramics for 3D printing using the Robocasting technique 
Due to their unique properties, bioceramics play a privileged role wi-

thin the diversity of available biomaterials.32,33,34 The bioceramics market is 
expected to rise around 7% during the forecast period of 2019 – 2024.35 
This is a motivation for a fast progress in bioceramic robocasting tech-
nology, and to keep up with the growth of the market. 

For a better understanding of the state-of-art of robocasting, the 
literature review will be divided into two sections, (i) porous bioceramics 
and (ii) fully dense monolithic bioceramics, as schematically distinguished 
in Figure 2.

Porous Bioceramics
TE is a multidisciplinary research field that began in 1980′s and com-

bines engineering and life sciences in order to develop new methods for 
tissue replacement with improved functionality.36 A prime step in TE is the 
development of complex 3D shapes with tailored external geometries, 
pore volume fractions, pore sizes and controlled interconnectivity. The 
3D scaffolds are mainly designed to be a temporary implant, acting as a 
template for new cells growth while continuously and steadily degrading 
during/after the healing process, so that the seeded cells can grow and 
proliferate to regenerate into a new tissue.37,38,39

Currently, most of the studies have used 3D printing as a tool to make 
scaffolds for TE. Therefore, the microstructure features, i.e., interconnected 
porosity, pore size distribution, and filament aspects, are crucial factors to 
assure mechanical properties similar to those of the tissue and appropriate 
biocompatibility.40 

Some aspects of bioceramic ink parameters, such as ink chemistry, 
processing additive (dispersant, binder, gelation agent), solids loading, 
powder reactivity, ceramic particle size, and distribution, must be unders-
tood since they have a significant effect on the printing quality. Besides, 
there is a strong correlation between particle size distribution and the 
force needed to extrude ceramic loaded inks, such that a wide particle 
distribution allows the formulation of higher particle loaded inks. Nom-
meots-Nomm et al. described how wide distributions allow for intimate 
packing of the particles within the ink, resulting in denser filaments post 
sintering. Also, they suggested that Pluronic F-127, a water soluble block 
co-polymer surfactant with thermally reversing rheological behaviour, 
consisting of poly (ethylene oxide)-poly(propylene oxide)-poly(ethylene 
oxide) tri-blocks (PEO-PPO-PEO), can be used as a universal binder.41 
Eqtsesadi et al. have suggested a simple recipe for robocasting 3D scaffol-
ds. They reported that aqueous suspensions containing 45% (v/v) of 45S5 
Bioglass were successfully prepared using 1 %wt carboxymethyl cellulose 
(CMC-250MW) as additive, tuning the rheological properties of the inks 
to meet the stringent requirements of robocasting. Another information is 
that an incomplete surface allowing bridging flocculation to occur is the 
key to obtain highly performing inks.42 Recently, Koski et al. proposed a 
natural polymer binder system in ceramic composite scaffolds, through 
the utilization of naturally sourced gelatinized starch with hydroxyapatite 
(HA), in order to obtain green parts without the need of crosslinking or 
post processing.43

Scaffolds produced by robocasting generally possess better me-
chanical properties compared to those produced by indirect AM tech-
nologies, because they usually exhibit a cubic geometry with orthogonal 
pores, whereas scaffolds produced by other techniques mostly present 
a cylindrical geometry with orthogonal or radial pores. The difference 
in strength can reach one order of magnitude. Scaffold struts produced 
by robocasting can be almost dense after sintering thus improving their 
mechanical properties.44,45 

Marques et al. reported the development of 3D porous calcium phos-
phate scaffolds by robocasting from biphasic (HA/β-TCP ≈ 1.5) pow-
ders, undoped and co-doped with Sr and Ag, where the ceramic slurry 
content was around 50% (v/v). After sintering at 1100 °C, scaffolds with 
different pore sizes and rod average diameter of 410 mm were obtained. 
The compressive strength was comparable to or even higher than that of 
cancellous bone. Sr and Ag enhanced the mechanical strength of scaffolds, 
conferred good antimicrobial activity against Staphylococcus aureus and 
Escherichia coli, and did not induce any cytotoxic effects on human MG-63 
cells. Furthermore, the co-doped powder was more effective in inducing 
pre-osteoblastic proliferation.46

To meet the requirements of a 3D scaffold, in vitro and in vivo tests 
are key steps for the development of new suitable biomaterials. In the 
following tables, we present a concise review on the in vitro and in vivo 
assays performed with robocasted bioceramics and biocomposite scaffol-
ds and their outcomes and relevance to the field.  There is a vast literature 
exploring the mechanical behavior of 3D bioactive glass scaffolds manu-

Figure 2 – Bioceramics fabricated by robocasting: (top right hand corner) fully dense monolithic parts, (bottom right hand corner) porous structures.

factured by the robocasting technique, but the literature regarding the 
interaction of cells with bioceramic scaffolds obtained by this processing 
method is fairly scarce. Generally, researchers focus on constructing hybrid 
materials and biocomposites aiming the optimization of the process. Some 
interesting studies on cell viability and proliferation when in contact with 
robocast bioceramics and biocomposites are presented in Table 1.

Regarding in vivo tests, up to this date, the five most relevant stu-
dies using bioglasses robocast scaffolds were conducted by Liu et al. in 
2013,30,47 Deliormanli et al. in 2014,48 Rahaman et al. in 2015,49 and Lin et 
al. in 2016.50 As to other bioceramics several studies are reported and the 
most important outcomes are presented in Table 2. 
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Authors Material Tested Scaffold Characteristic
Scaffold

Porosity
In Vitro Test Cell Line Time Outcomes Ref

Chung-Hun et al. Sol-gel bioactive glass (70SiO2 - 
25CaO -5P2O5) and PCL

Degradable macro-channeled sca-
ffolds

Pore size of 500 x 500 
µm

MTT assays in static and dynamic 
conditions

hASCs Up to 28 days Cells were viable and grew actively on the scaffold as-
sisted by the perfusion culturing (dynamic condition).

Osteogenic development of hASCs was upregulated 
by perfusion culturing

51

Gao et al. Gelatin + sol-gel bioactive glass 
(70SiO2 - 25CaO - 5P2O5 mol-%)

Cubic shaped scaffolds and a grid-
like microstructure

~ 30% Cell viability and

ALP activity 

MC3T3-E1 Up to 21 days Scaffolds supported cell proliferation, ALP activity, and 
mineralization

52

Richard et al. β-TCP, 

β-TMCP, and BCMP

Inter-rod spacing of ~460 µm β-TCP= 32%

β-TCMP=45%

BCMP=48%

MTT assay, 

ALP, Osteocalcin, TGF-β1, and 
Collagen

MC3T3-E1 7, 14 and 21 days No toxicity for this cell line. Calcium nodule formation 
and bone markers activity suggested that the materi-

als would induce bone formation in vivo.

53

Won et al. Ffibronectin+ nanobioactive 
glass (85 SiO2- 15CaO %wt) and 

PCL

Bioactive nanocomposite scaffolds Pore size of 0.5 mm x 
0.5 mm

Cell adhesion and 

proliferation

rMSCs 14 days Scaffolds significantly improved cells responses, in-
cluding initial anchorage and subsequent cell prolif-

eration

54

Varanasi et al. PCL and PLA-hydroxyapatite (70 
wt-%)

2D films and 3D porous sacffolds ~76% MTT assay M3T3-E1 7 days No deleterious influence of the polymer degradation 
products on the cells and HA acted as a support for 
osteoblast cytoskeletal attachment, promoting their 

proliferation

55

Andrade et al. β-TCP nd gelatin Flexible bioceramic scaffolds with 
pore size of ~200 μm

45% Cell proliferation in static and dy-
namic conditions

MC3T3-E1 3, 7, 13 and 21 
days

Both culture systems fostered cell proliferation up to 
day 21, however, the dynamic methodology (oscilla-
tory flow variation) achieved a higher cell proliferation

56

Martínez-Vázquez 
et al.

Hydroxyapatite (HA) Prepared by drying at room tem-
perature or the freeze-drying 

method

71-77% Cell Viability MC3T3 1, 3, 7, and 12 
days

Freeze-dried scaffolds presented a significantly in-
crease in initial cell count and cell proliferation rate 
when compared to the conventional evaporation 

method

57

Fiocco et al. Silica-bonded calcite Two spacing between rods:

300 μm and

350 μm

56%–64% Cell adhesion and distribution ST-2 cells 1, 3, 7 and 14 days Cells showed high metabolic activities and expressed 
typical osteoplastic phenotype. Mineral deposit af-
ter cell cultivation was observed and all the scaffolds 

stimulated cell adhesion and proliferation

58

Stanciuc et al. Zirconia-toughened alumina 
(ZTA)

Robocasting of 2D pieces and 
3D-ZTA scaffolds

30-50% Cell viability, ALP activity, gene 
expression and minera-lization 

human primary 
o s t e o - b l a s t s 

(hOb)

10, 20 and 30 days 2D-ZTA presented a higher ALP activity and an in-
creased hOb cells proliferation than the 3D-ZTA scaf-
folds. RUNX2 was upregulated on all samples after 10 

days.

59

Ben-Arfa et al. Sol-gel glass composition 
(64.4SiO2-4.9Na2O-21.53CaO 

- 9.09 P2O5,% wt.)

Different pore sizes = 300, 400 and 
500 βm;  with dimensions of 3 × 3 

× 4 m

~47% MTT assays according to ISO 
10993-5 standard

MG63 osteo-
-blasts

7 days Within the pore size range tested, pore size did not ex-
ert any significant influence on cell viability, present-

ing no cytotoxicity towards the osteoblasts

60

Table 1 – In vitro studies with robocast scaffolds from different materials.
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Authors Material Tested Characteristics Porosity In Vivo Test Animal Model Time Outcomes Ref

Liu et al. Bioactive glass 13-93
Scaffolds BMP2 loaded and/or 
pretreated in phosphate solution

50% Histomorpho-metric analysis
Calvarial defects of Ø4.6 mm 

in rats
6 weeks

BMP-2 pre-conditioned scaffolds significantly enhanced 
the capacity to support new bone formation

59

Liu et al. Bioactive glass 13-93
6 x 6 x 6 mm scaffolds, pore width 

of 300 µm
47%

Mechanical properties during in 
vitro and in vivo tests Subcutaneous model in rats

Up to 12 
weeks

In vivo reduction in mechanical properties was greater than 
in vitro due to greater glass dissolution and faster conversion 

of the glass into HCA
30

Deliormanli et al. Bioactive glass 13-93B
Scaffolds with different pore sizes 

=300, 600 and 900 µm
45-60%

Histological exploring
tissue growth and blood vessel 

infiltration
Subcutaneous model in rats 4 weeks

All scaffolds were infiltrated with fibrous tissue and blood 
vessels. No difference was found in the formation of the fi-

brous tissue for the different pore sizes.
60

Rahaman et al. Bioactive glass 13-93
Scaffolds with or without BMP2 
and pretreatment in phosphate 

solution
50%

Histological, histomorpho-metric 
analysis and SEM

Calvarial defects of Ø 4.6 
mm in rats

6, 12 and 
24 weeks

Bone regeneration increased with implantation time, and 
pretreating and BMP2 loading significantly enhanced the 

bone formation rate (for all studied times).
61

Lin et al. Bioactive glass 13-93
Scaffolds with or without BMP2 

loading
47%

Histological, SEM, and Histomor-
pho-metric analysis

Calvarial defects of Ø 4.6 
mm in rats

6, 12 and 
24 weeks

BMP2 scaffolds significantly enhanced bone regeneration 
and their pores were almost completely infiltrated with la-
mellar bone within 12 weeks. BMP2 scaffolds also had a sig-
nificantly higher number of blood vessels at 6 and 12 weeks.

62

Simon et al. Hydroxyapatite (HA)
Scaffolds with different rod sizes 
and porosities (different mac-

ro-pores channels)

D i f f e r e n t  p o r e 
channels. From 250 

to 750 µm2

Micro-CT scans, histological and 
SEM analysis

Calvarial defects of Ø 11 mm 
in rabbits

8 and 16 
weeks

Bone ingrowth at 8 and 16 weeks were comparable for all 
samples. Bone attached directly to HA rods indicating os-

teoconduction.
 61

Dellinger et al. Hydroxyapatite (HA)
Scaffolds with and without BMP-

2 loading
Pores of 100–700 

µm
Histological analysis

Metacarpal and metatarsal 
bones defects of Ø 6 mm 

in  goats

4  and 8 
weeks

BMP-2 loaded scaffolds presented a significantly greater 
bone formation at both experimental times. The cells used the 
scaffolds as a template since the lamellar bone was aligned 

near the scaffolds’ rod junctions.

62

Luo et al Ca7Si2P2O16

Hollow-struts-packed (HSP) 
bioceramic scaffolds

Up to 85% Micro-CT and histological analysis
Critical femoral bone defects 

of Ø8 × 10 mm in rabbits
4  and 8 

weeks

HSP scaffolds possessed a superior bone-forming ability 
and micro-CT analysis showed that the new bone started 
to grow in the macropores and also into the hollow channels 

of the scaffolds.

63

Lin et al.
Collagen and hydro-

xyapatite (CHA)

Biomimetic 3D scaffolds via a 
low-temperature process

3 rod widths: 300, 600 and 900 
μm

72-83% micro-CT and histological analysis
Ø 5 mm defects in the femur 

(condyle) of rabbits
2, 4, 8, or 
12 weeks

CHA scaffolds facilitated new bone growth, as the bioma-
terial was resorbed or incorporated into the newly formed 
bone. CHA promoted better defect repair compared to the 

nonprinted CHA scaffolds.

64

Shao et al.
M a g n e s i u m - d o p e d 

Wollastonite/
TCP

CSi-Mg10 (10 mol% of Mg in 
CSi),

CSi-Mg10/TCP15 (15-wt% TCP 
content) and pure β-TCP.

52-60%
Micro-CT, histological and me-

chanical tests
Calvarial defects of Ø 8 mm 

in rabbits
4, 8 and 12 

weeks

CSi-Mg10/TCP15 scaffolds displayed higher osteogenic 
capability when compared to CSi-Mg10 and β-TCP after 8 
weeks. After 8 and 12, CSi-Mg10/TCP15 presented an in-
crease in their mechanical properties, possibly due to the 

new bone tissue ingrowth into the scaffolds

65

Table 2 - In vivo studies with robocast scaffolds from different materials.
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Fully dense monolithic bioceramics
When developing dense bioceramics by robocasting several parame-

ters should be examined in a sequential step process that should be used 
to plan new studies. Based on information regarding the materials and the 
processing parameters, it is possible to create a robocasting suspension 
development strategy. This is shown in Figure 3.

Figure 3 shows the level of complexity associated with the develop-
ment of new ceramic inks. It necessarily involves a technical study aimed 
at understanding the effects of solid fractions (particle quantities, sizes, 

and morphology) on the ink. At the same time, it is crucial to understand 
the interaction of the ceramic material with the fluid selected for the ink 
manufacture, i.e., which additives can be used to achieve a stable and 
printable suspension. Finally, it is of major importance the definition of 
the printing strategy and for the robocasting processing parameters to 
be optimized. 

The following sections detail the relevant parameters to guide future 
developments on high densification of bioceramics.

Morphology and Particle size distribution
There is a consensus in the literature on the need for highly refined 

starting powders with broad particle size distribution to maximize green 
body compactability and sinterability.66,67,68 In parallel, some authors state 
that solid loads with bimodal distributions induce a reduction of the ink’s 
viscosity when compared to suspensions manufactured with monomodal 
distribution, for the same volume of suspended solids.69,70,71

Olhero and Ferreira fabricated three starter powder systems with va-
riations in mean particle size for the preparation of trimodal suspensions. 
The authors found that the viscosity of the suspensions increased as the 
percentage of fine powders increased and, contrary to common sense, 
the powders with a high concentration of coarse solids showed a decrease 
in viscosity. This fact is due to the rheological behavior of the powders 
against the shear stress.72

Particle morphology, on the other hand, affects the rheology of sus-
pensions secondarily, due to the dispersed solids content and particle 
size distribution, being much more impactful in colloidal suspensions. 
Besides, suspensions based on high aspect ratio particles, or hetero-
geneous morphologies, are more susceptible to shear flow than those 
based on spherical particles.

Nutz et al. studied the rheology of two groups of graphite particles 
with different morphology, size, and surface area. The authors concluded 
that suspensions made with spherical particles had a significantly lower 
viscosity than those made with particles of anisotropic morphology.73 
Regarding the shear flow mechanism, this phenomenon is explained by 
the resistance promoted by the viscous suspension to the rotation of the 
elongated particles against the ease of spherical particles, which offer 

Mass solids content
Some authors reported that, whenever possible, the ideal solids con-

tent of inks for use in robocasting should be in the range of 40 to 45% 

Figure 3 - Robocasting suspension development strategy.

low rotational resistance.74,75

Figure 4 shows volumetric defects promoted by the concentric alig-
nment of particles with high aspect ratio.

Figure 4 – Cross section of dried platelet paste, with the location of 
several bubbles marked. Reproduced with permission. 76

and never below 30% (v/v), this would grant a dimensional and geometric 
predictability after sintering.77,78 Table 3 presents some shrinkage results 
for different materials and additives as a function of the volume of sus-
pended solids.

Moreover, the literature reiterates that suspensions with high 
saturation, greater than 50% (v/v) produce parts with high densification 
rates and low shrinkage and warp. Nevertheless, the stabilization of 
suspensions with large volumes of solids requires a thorough rheological 
analysis, mainly due to the need of controlling the shear stresses during 
the extrusion process.79,80,81 In general, the increase in mass viscosity with 
increasing volume of suspended solids can be directly attributed to the fact 
that a higher volumetric fraction of suspended ceramic particles further 
restricts the media flow.82

Rheological stabilization of suspensions
Controlling the rheological properties of the filament is essential to 

prevent sag and part deformation after filament extrusion, especially when 
geometry includes complex shapes and bridged structures such as in 
scaffolds. An adequate behavior can be achieved in some ways, such as 
by controlled flocculation of the ceramic suspension to form a gel (e.g., 
change in pH, solvent ionic strength, the addition of polyelectrolytes) or 
by using gelling additives such as a reverse thermal gel. 

The literature highlights three mechanisms of solids stabilization in 
a suspension: electrostatic stabilization, arising from the presence of 
electric charges on the surface of the particles which counterbalances 
the attraction promoted by the van der Waals forces; steric stabilization, 
where the adsorption of polymers on the surface of the suspended material 
promotes the mechanical immobilization of the particles; and electrosteric 
stabilization, a combination of electrostatic and steric stabilization, where 
polyelectrolytes are adsorbed on the surface of the particles and ions from 
the dissociation of the polyelectrolytes promote an adjacent electrostatic 
barrier.83,84,85 The mechanisms are demonstrated in Figure 5. 

For the study of the stability of suspensions, a handy tool is the Zeta 
potential measurement, as it describes the potential difference between 
the dispersion medium and the stationary layer of boundary fluid at the 

Materials Additives used Solid loading 
(v/v) Linear shrinkage Ref. 

3Y-TZP PEG-DA, DEG and Diphenyl 
(2,4,6- trimethylbenzoyl) 

phosphine oxide 

37,5% ~28%  

3Y-TZP 
PVA (MW 31000), PEG (MW 

400), C6H8O6 and C6H8O7 
38% 33% 8 

Si3N4 H-PEI, L-PEI and HPMC ~35% ~28% 7 

Si3N4 
Darvan 821A, nitric acid and 

ammonium hydroxide 
52% 16%  

Al2O3 
Dolapix CA, magnesium 
chloride and Alginic acid 45% ~26%  

Al2O3 
Darvan C-N, Bermocoll E 
and a polyethylene-imine 

solution 
56% ~17%  

Al2O3 Dolapix CE 64, PEG 400 and 
methocellulose 

55% 15-19%  

 

Table 3 – Linear shrinkage as a function of solid loading for some bioceramic inks.

surface of the dispersed particles. In other words, the technique makes it 
possible to assess the variation of a repulsive or attractive tendency among 
the solid particles as a function of the pH change in suspension and can 
be used to predict and control suspension stability. From this knowledge, 
the interaction forces can be adjusted accordingly, from a highly dispersed 
state in which repulsion forces dominate to a weakly flocculated or even 
strongly aggregated state by which attractive forces are predominant. 
In the case of aqueous suspensions with high solids concentration, it is 
common to use polyelectrolytes containing ionizable functional groups, 
such as amine (-NH2) or carboxylic (-COOH), for electrostatic stabilization, 
in addition to pH control.89,90,91

Some authors support ideal rheological parameters to ensure mass 
printability, such as viscosity between 10 and 100 Pa.s, elastic modulus 
between 105 and 106 Pa and yield stress between 10² and 10³ Pa. For 
successive printing, concentrated ceramic suspension for robocasting has 
to possess suitable viscoelastic properties, as described by the Herschel–
Bulkley model, shear-thinning flow behavior, and possessing relatively 
high modulus (G′) with ty > 200 Pa to allow structural self-support and 
fabrication of high aspect ratio structures (Figure 6).6

For this optimization, appropriate rheological modifiers, such as floc-
culating/binder agents, should be added to the already stabilized, i.e., 
deflocculated, suspensions.18,79,86 In the usual approach to obtain the 
ideal parameters, reported in the literature, it is proposed the use of a 
deflocculating agent/charge binder, as opposed to the one used for the 
dispersion of the particles.6,87,88 This addition intends to control flocculation 
by promoting a reduction of the adsorbed layer. This procedure improves 
a bonding effect among the particles and should be accompanied by the 
addition of a rheological modifier, usually a long-chain polymer, aimed at 
stabilizing mass plasticity (steric stabilization). Table 4 summarizes these 
parameters.
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Materials

Additives used
Solid 

loading 
(v/v)

Average 
grain size 

(d50)

Relative 
density

Ref

Dispersants
Flocculant / 

binder
Rheological 

modifier

SiC Darvan 670, PEG 10.000 and NH4Ac 44% 0.7 βm ~95% 89

Al2O3 Pluronic F-127 39% 0.3 βm ~97% 17

Al2O3 Darvan C, psyllium and Glycerol 49% 0.4 βm ~98% 85

Al2O3 Darvan 821A PVP 55% 0.6 βm 92% 86

3Y-TZP Dolapix CE 64/ NH4OH 50% 0.04 βm ~99% 87

3Y-TZP C6H8O6 / C6H8O7

PVA (MW 
31000)

PEG (MW 400) 38% ~0.4 βm 94% 8

Si3N4 H-PEI/L-PEI HPMC 52% 0.77 βm ~99% 7 

Si3N4 H-PEI/L-PEI Darvan-821 HPMC 44% 0.5 βm 97% 27

Table 4 - Relationship between additives used, suspended solids loading, average particle size, and relative density of the final part.

printable height (hmax) of a free wall, without the risk that it will of collapse 
due to gravitational action, Equation (4).96

     
(4)

where:         is the dynamics yield stress (Pa), 𝜌𝜌   is the specific weight 
of the ink and g is the gravitational contribuition (9.81m/s2) 

 
Future Perspectives 
An urging trend in robocasting is 4D printing. The conception that 

“time” can be incorporated into the conventional concept of 3D printing 
as the 4th dimension is commonly known as 4D printing.91 This novel mo-
del of printing can potentially benefit many different areas in biomedical 
applications, such as tissue regeneration, medical device fabrication, 
and drug delivery.92 

A perceived possibility to conduct a 4D printing is to combine different 
materials during processing. Multi-material printing, i.e. polymer and 
ceramics, could prevent the secondary shaping after printing from the 
polymeric materials.93 In most of the reported AM techniques, the form of 
the as-printed green body usually dictates the final shape of the sintered 
structure, while post-printing secondary shaping of the green body ob-
tained from the AM process is minimal. However, a deep understanding 
on how external stimuli such as temperature, moisture, light, magnetic 
field, electric field, pH, ionic concentration or chemical compounds can 
affect the characteristics of the printed materials is yet to be established. 

Another possibility in the AM field is the obtention of smart materials. 
Some interesting features could be achieved using this type of materials 
such as controlled swelling, predicted shape alterations, functionalities 
change and self-assembly.94 Self-shaping geometries, like as bending, 
twisting or combinations of these two basic movements, can be imple-
mented by programming the material’s microstructure to undergo local 
anisotropic shrinkage during heat treatment, as presented in Figure 8. This 
functional design may be achieved by magnetically aligning functionalized 
ceramic platelets in a liquid ceramic suspension, subsequently conso-
lidated through an established enzyme-catalysed reaction, and finally 
achieved deliberate control over shape change during the sintering step.95 

Regarding the robocasting process, geopolymeric slurries could be 

Figure 5 – Representation of mechanisms to improve the particle dispersion. Reproduced with permission. 6 Copyright 2018, John Wiley and Sons.

Figure 6 – Rheological behaviors required for ceramic robocasting. Reproduced with permission. 6 Copyright 2018, John Wiley and Sons.

Finally, some equations are presented as support for the controlling of 
parameters and print design. The ideal volumetric flow rate (Q) to fill the 
path taken by the print nozzle, ensuring the maintenance of the predicted 
specimen dimensions is essential for defining the robocasting parameters. 
Several authors suggest Equation (1) to specify this parameter:16,17,85,86

     
 (1)

where: Q = ideal volumetric flow rate (µm³/s), r = radius of extrusion 
nozzle (µm) and ( γ̇  ) = shear rate (s-1).

Since suspensions used in robocasting must have a dispersed solids 
fraction higher than 30% (v/v), they eventually exhibit shear-thinning flow 
behavior. Thus, several authors claim that the Herschel-Bulkley model, 
Equation (2), satisfactorily describes the degree in which the ink presents 
a shear-thinning or shear-thickening behavior.3,5,90

    (2)

where: σ = shear stress (Pa), σ_y^(D_yn ) = dynamic yield stress 
(Pa), K = viscosity parameter (Pa.sn), γ = shear rate (s−1) and n = 
shear exponent, for n < 1 the fluid is shear-thinning, whereas for n > 1 
the fluid is shear-thickening.

Smay et al. proposed another strong feature for determining printing 
strategy and extrusion parameters.93 The authors described an approach 
to predict the maximum span by which a structure can be constructed in 
green without experiencing deformation, as depicted in Equation (3).93

         (3)

where: G’ = shear modulus,    = specific weight of the ink, S = rela-
tion between the span length and the layer height and D = nozzle diameter.

Another challenge experienced during the printing process is the 
collapse of free walls, mostly associated with the rheological properties 
of the ink. Figure 7 exemplifies a case in which the poor stability of the 
ink leads to a completely collapse of the structure.

In turn, M’Barki et al. proposed an equation to define the maximum 

𝜎𝜎𝑦𝑦
𝐷𝐷𝑦𝑦𝑦𝑦  

𝑄𝑄 = (𝜋𝜋𝑟𝑟3 4⁄ ) ∙ �̇�𝛾 

𝜎𝜎 =  𝜎𝜎𝑦𝑦
𝐷𝐷𝑦𝑦𝑦𝑦 + 𝐾𝐾�̇�𝛾𝑛𝑛 

𝐺𝐺′ ≥ 1.4 ∙ 𝜌𝜌 ∙ 𝑆𝑆4𝐷𝐷 

Figure 7 – Experimental buckling response of the free wall, the three stages of failure: buckling initiation, buckling development and full collapse. Reproduced with 
permission.96 

ℎ𝑚𝑚𝑚𝑚𝑚𝑚 =  
𝜎𝜎𝑦𝑦

𝐷𝐷𝑦𝑦𝑦𝑦

𝜌𝜌𝜌𝜌  

𝜌𝜌 

Figure 8 – Illustration of the proposed self-shaping mechanism: (a) bending and (b) twisting configuration, based on bottom-up shaping method 
of ceramic suspensions. Reproduced with permission.102
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good candidates as smart materials for 4D printing provided their reaction 
over time could be effectively controlled.96 However, within bioceramic 
content, the evidence on works reported in 4D systems does not show 
specific cases that support these advances.

In the last decades, a discussion on how to relate AM and TE brou-
ght up another printing concept, a new bottom-up printing system. This 
emerging technology, also called bioprinting, relies on the possibility of 
assembling building blocks (cells) that can mimic the healthy structure 
into larger tissue constructs. Bottom-up TE means to pattern the indi-
vidual components of one tissue according to a predefined organization 
that guides the maturation of the construct towards a functional histo-
architecture, owing in part to the promotion of cellular self-sorting and 
self-assembly capabilities and morphogenetic mechanisms.97 However, 
for this process cells are a mandatory component of a bioink. So, obtaining 
a formulation that includes biologically active elements or molecules and 
also the biomaterials is a challenge that is still to be faced. To the best 
of our knowledge, up to this date, no study has been dedicated to the 
development of a functional bioink to be processed by robocasting. Up 
to now, robocasting technology has been mostly employed in the fabri-
cation of a wide range of technical and functional scaffolds with complex 
morphologies. In order to push the progress of this processing method 
the combination of fundamental knowledge across different fields will 
allow the fabrication of unique and exciting architectures beyond simple 
robocasting technique.5

As presented in this review, the key factor towards multi-material prin-
ting  and other AM future technologies relies on multidisciplinary research 
to face all the imposed challenges. Developing new ink formulations for 
robocasting bioprinting as well as designing smart materials will certainly 
expand the range of clinical applications for these materials and demons-
trate the potential of AM in the biomedical field. 
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