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Introduction
Curiosity catches the eye when it comes to guessing what will be the 

first bioprinted functional organ to hit the market 1,2.The skin is among 
the first in this list due to a demand that is not only limited to regenerative 
medicine and the need for transplantation of this organ, but due to ethi-
cal issues related to animal testing3. Animal use has already been ban-
ned in many countries and the demand for equivalent skin models in the 
cosmetics and pharmaceutical industries is a worldwide trend4-7. Players 
like Natura, L’Oréal and Procter & Gamble are investing in bioprinting 
technology for the development of organotypic skin models.

As of 2019, the Normative Resolution of the National Council for Ani-
mal Experimentation Control (RN 18/2014, CONCEA) entered into force. 
This requirement obliges cosmetics manufacturers and pharmaceutical 
laboratories to adopt alternative methods avoiding tze use of animals for 
product testing. Along this line, the European Union has banned imports 
of animal-tested products since 2013 (Amendment 2003/15 / EC of Di-
rective 76/768 EEC). Besides the high cost and import-related issues of 
these equivalent models, they are limited as they are sold as kits that can 
be used only in specific assays, as an accompaniment to morphological 
and molecular changes 8,9.

An example in the Brazilian cosmetic industry, Natura Cosmetics has 
not conducted animal safety and efficacy tests since 2006, nor does it 
purchase resources or ingredients that have been tested on animals. In 
2018 the company was certified by Cruelty Free International, the first in 
Latin America to have this certification.

Regarding the field of regenerative medicine, Brazil today has 20.6 
million elderly people, a number that represents 10.8% of the popula-
tion. By 2060, the country is expected to have 58.4 million elderly (Bra-

zilian Institute of Geography and Statistics-IBGE)10. With rising rates of 
obesity, diabetes, and aging populations, the repair of damaged or lost 
tissue is a worldwide concern and the demand for in vitro recreated ar-
tificial skin has grown.

Chronic lesions are followed by severe, often fatal, disorders with di-
fficult extracellular matrix remodeling and that usually require transplan-
tation and urgent intervention to restore tissue integrity. One possibility 
is the transplantation of allogeneic grafts with a high cure rate, but these 
are a complex process whose demand exceeds availability.

Burns, in turn, are also a major public health problem. In Brazil there 
are around 1,000,000 burn accidents per year, of these, 100,000 patients 
seek hospital care and about 2,500 die11,12, it is the second leading cause 
of death in children not only in the United States and, in Brazil as well13. 
According to US statistics, about 10% of patients awaiting life-saving 
transplants die before they can receive donor organs14.

Given the regulatory challenges and obstacles of agencies such as 
ANVISA in Brazil and the FDA in the United States, regulating products 
that will contact a patient’s body is  substantially more costly and com-
plex than approving an in vitro skin model, which will only be used on 
the lab bench for simulations and testing of drugs and cosmetics. Ne-
vertheless, the fact that there are already commercially available skin 
replacements for the treatment of chronic wounds such as Apligraf® 
and INTEGRA®, the accumulated prior knowledge and the paved roads 
for regulatory approval of this type of product are already established in 
some countries.

From a market perspective, the global size of 3D cell culture was es-
timated at USD 558.0 million in 2016, displaying a CAGR of 14.8% over 
the forecast period. The BCC Research report 16 predicts that the bio-
printing market will reach $ 1.8 billion by 2021. This growth is estimated 
at a compound annual growth rate of 43.9% from 2016 to 2021. Another 
report from the consulting firm Grand View Research (2018) 17estimated 
the globalbioprinting  market at $  682  million in 2016  with a  forecast 
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that the market could reach $ 2.6  billion by 2024.
Growth is expected to be driven by new printing technologies as 

well as expansion of new applications in the medical field, such as blood 
vessels and other applications.

With regard to bioprinted skin models, there is a notable progress 
that has been made, especially in the last decade. Although we are close 
to achieving a biomimetic functional skin, dialogue and joint efforts 
are needed for products to leave the benches and reach patients and 
industry, since it is an essentially interdisciplinary area 18,19..

Brazil is the fourth largest global market for beauty products, 
surpassed by the United States, China and Japan. About 2.5 thousand 
companies in the segment had revenues of R$ 42.6 billion in 2015, 
according to the Brazilian Association of the Personal Hygiene, Perfumery 
and Cosmetics Industry (ABIHPEC) 16 (Bergin, 2016). Cosmetic products 
must be safe for the user and effective for the declared activity. Often, the 
cosmetic industry launches new products with diverse purpose appeals. 
Thus, testings that prove the marketing appeal and safety of these 
products are expected to be conducted. In a report by FAPESP Magazine: 
“As of 2019, any new beauty product must undergo dermatological tests 
on reconstructed human skin, in Brazil or abroad” 20, 21.

This paper provides a review of the state-of-the-art 3D bioprinting 
technology for human skin reconstruction, presenting aspects and chall 
enges of the project (preprocessing), printing (processing), and tissue 
maturation (post-processing) phases for applications in the cosmetic 
industry. Finally, the case of the company Natura Cosmetics is presented.

Skin structure and functions
The skin is the largest organ in the human body, representing up to 

16% of body weight 22. It is the boundary between an organism and the 
environment, acting as a defense organ protecting against the penetration 
of pathogens and external toxins, controlling the damage caused by the 
UV rays and preventing desiccation 23. The skin consists of three main 
compartments: the epidermis, the dermis and the hypodermis 24.

The epidermis, the superficial and thinner layer, consists mainly of 
keratinocytes and melanocytes, and because it has high cell density, acts 
as a vital barrier, preventing the entry of exogenous aggressors, chemical, 
physical or biological, and acting on water balance which avoids excessive 
transepidermal loss of water and protein to the environment 25. Melanin, 
which is a substance produced and accumulated in the epidermis, protects 
against ultraviolet rays, which are in turn important in the fixation of vitamin 
D3. The dermis located just below the epidermis is known as the core 
of the skin, composed mainly of collagen, elastin, glycosaminoglycans 
(GAGs) and fibroblasts, besides being important in the biomechanical 
protection of the skin. It performs sensory and immunological functions 
through the lymphocytes that protect against antigens and allergens that 
come in contact with the epidermis. The sweat glands, also present in 
the dermis, help in the excretion of some substances. The hypodermis is 
located just below the dermis and is a very vascularized layer, consisting 

Figure 1 - Diagram of the different applications of bioengineered skin: reconstructive surgery, modeling of physiological and pathological skin 
conditions, pharmaceutical screening (Adapted Source15 Sarkiri et al. 2019).

mainly of adipose tissue, which contributes to thermal regulation and also 
to mechanical protection 22,26 (Figure 2).

Some authors do not consider hypodermis as part of the skin; however, 
the hypodermic layer plays an important role in paracrine signaling of 
the skin, with functions related to skin protection and maintenance of 
homeostasis. It includes activities that help to protect bacterial infections, 
control of hair growth cycles, thermogenesis and plays an important role 
in wound healing, therefore increasing the relevance of the skin model27. 
Thus, studies show that when adipocytes are co-cultured in a monolayer 
with keratinocytes they stimulate their proliferation and differentiation28, 
whereas adipocytes in co-culture with fibroblasts and keratinocytes 
demonstrate the same proliferative effect in addition to the recruitment 
of fibroblasts, which play an important role in wound healing29.

Figure 2- Skin structure model. Source: https://courses.lumenlearning.
com/wmopen-biology2/chapter/structure-and-function-of-skin/
(09/09/2019).

Commercial Reconstructed Skin Models
Some reconstructed skin models are commercially available. However, 

the high importation cost and very long delivery times make the process 
unfeasible 8,30,31. The development of new models of reconstructed skin 
translates to autonomy for many countries and companies.

In this context, the OECD encourages the production of new 
reconstructed skin models by providing detailed guidance in its OECD 
Guide No. 439 on the quality and performance control parameters 
that the model should present. Such parameters include standardized 
criteria for cell viability, barrier function, morphology and reproducibility 
4. Different approaches have been developed to achieve this goal, 
such as the development of reconstructed skin models, for example, 
reconstructed human epidermis models and full thickness skin models 32.

The first skin substitute from epidermal cells was described in 1974 by 
Rheinwald and Howard Green of Harvard Medical University, who cultiva-
ted a small fragment of healthy skin over a wound. The success of the graft 
depended on the presence of dermal elements remaining or transported 

https://courses.lumenlearning.com/wmopen-biology2/chapter/structure-and-function-of-skin/
https://courses.lumenlearning.com/wmopen-biology2/chapter/structure-and-function-of-skin/
https://courses.lumenlearning.com/wmopen-biology2/chapter/structure-and-function-of-skin/
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to the wound, which motivated further research and triggered the deve-
lopment of the first commercialized product, Epicel, from the American 
company Genzyme (Figure 3). An epidermal substitute obtained from 
isolating autologous keratinocytes and co- culturing of these cells over 
a layer of rat mesenchymal cells, which are expanded numerous times 
over weeks. It is extremely fragile and is rarely used. This product has 
been classified by the FDA as a xenograft (derived from other non-human 
animal species) as it uses a rat mesenchymal cell layer as a supplement 
for in vitro cultivation 33,34.

Figure 3 - Timeline of skin substitutes used in medicine 35 (Adapted from Tarassoli 
et al., 2017).

Another product developed by Americans from 1979-80, Integra, was 
not approved by the FDA for commercialization until 2002. Integra is a 
synthetic “acellular artificial skin” that acts as a two-layer dermal analogue, 
an internal matrix of Type I bovine collagen crosslinked via a controlled 
freeze-drying process with chondroitin-6-sulfate, glycosaminoglycan 
(GAG) (1-ethyl-3- (3-dimethylaminopropyl) and carbodiimide EDC, and 
an outer silicone layer that simulates the epidermis. Each layer performs a 
function, the inner layer is bioresorbable and simulates a dermal matrix, 
allowing the invasion of fibroblasts and capillaries (angiogenesis) from the 
receptor bed, enabling the repair of an equivalent dermal structure and 
promoting cell growth and the synthesis of a new collagen matrix. Gra-
dually, the collagen is degraded, and over a period of 3 to 6 weeks a new 
matrix forms. After healing, the external silicone layer with an anti-infection 

and mechanical barrier function, that controls fluid loss (homeostasis) can 
be withdrawn 36-38.

Another group from the Massachusetts Institute of Technology (MIT) 
(Jim Bell, 1981) developed Apligraft® (Organogenesis Inc., USA), also 
marketed and approved by the FDA, since 2001. A bilaminar structure 
consisting of a dermal layer of human neonatal fibroblasts on a Type I bovine 
(calf) collagen gel, and an epidermal layer of keratinocytes from allogeneic 
culture39. The resistance and insolubility of collagen are obtained by 
shrinkage of the gel by the fibroblasts, resulting in the dermal equivalent 40.

Orcel® is a cellular skin substitute consisting of a bilayer cell matrix. 
With human donor fibroblasts grown inside a Type I bovine collagen matrix, 
and keratinocytes from the same donor grown outside the collagen matrix. 
Orcel® serves as a bioresorbable matrix, which provides a favorable 
environment for host cell migration due to cytokines and growth factors 
secreted by allogeneic fibroblasts. According to the manufacturer, after 
2-3 weeks of application, no traces of allogeneic DNA are found in the 
wound 41.

Biobrane® is a synthetic acellular skin substitute consisting of a 
bilaminated membrane formed by a nylon mesh filled with porcine 
collagen type I (dermal analogue) and covered with a thin layer of silicone 
(epidermal analogue). It has small pores that allow the drainage 
of the transudate, being considered a semipermeable substitute. 
It enables fibroblasts and capillaries to invade the wound and repair the 
dermal defect. Reepithelization occurs from the presence of keratinocytes 
at the wound edge 42.

Dermagraft® (Organogenesis) is the product that most closely re-
sembles the product that this thesis proposes to develop. It is a dermal 
substitute with a layer of allogeneic fibroblasts grown on a layer of Vicryl 
polyglycolic acid polymer. The product is cryopreserved but becomes viable 
and metabolically active when placed on the wound bed. For the major skin 
models marketed today, see Figure 4.

The Laboratoire Órganogénese Experimental (LOEX) in Quebec City, 
Canada, has developed a skin reconstructed from the self-assembly te-
chnique, a new approach to tissue engineering. This technique is based on  
the intrinsic property of cells self-organizing to form three-dimensional 
tissue under appropriate conditions. For example, skin fibroblasts secrete 
their own extracellular matrix in the presence of ascorbic acid, allowing 
the production of supportive dermal leaflets on which keratinocytes can 
be seeded 44.

Figure 4 - Tissue engineered skin substitutes. (a) Acellular: i. Karoderm ii. Biobrane iii. Integra (b) Epidermal Autologous: i. Cell Spray ii. Epicel iii. 
Laserskin (c) Dermal Autologous: i. Hyalograft 3D (d) Dermal Allogenic: i. TransCyte ii. Dermagraft (e) Dermal Xenogenic: i. Permacol (f) Epidermal/
Dermal (Composite) Autologous i. Tissue tech Autograft system (g) Epidermal/Dermal (Composite) Allograft i. Apligraf. 43 (Source with pemission 
for use: Vig et al., 2017).
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3D Bioprinting: The Additive Manufacturing
Before we start the discussion on the state of the art of bioprinted 

skin models, it is important to situate and define some key terms for 
this area. Automated skin reconstruction is part of a large area called 
biofabrication. The term biofabrication is defined as “the automated 
generation of functional biological products with structural organization 
of living cells, bioactive molecules, biomaterials, cell aggregates (such as 
micro-tissues, or hybrid cell-material structures) through bioprinting or 
bioassembly, followed by a tissue maturation process” 45,46. In either case, 
additive manufacturing may be used in some of the fabrication stages of 
these structures.

Additive manufacturing, or more commonly known as 3D printing, is a 
process of controlled deposition of materials layer-by-layer to generate a 
three-dimensional structure (ISO - INTERNATIONAL ORGANIZATION FOR 
STANDARDIZATION, 2017). These technologies bring with them unique 
capabilities of rapid prototyping, repeatability and high accuracy 47,48. 
Bioprinting is a subarea of additive manufacturing and an emerging and 
revolutionizing field of technology that is part of the wider field of tissue 
engineering and regenerative medicine 49.

Bioprinting is used to fabricate three-dimensional structures of 
biological materials, generally cells and biomolecules, through layer-
by-layer precise positioning 50,51. The printing process is controlled by a 

computer instruction, usually a computer-aided design (CAD) file of the 
respective tissues structures 51. The advantage of this technology is the 
ability to manufacture biomimetic tissues to meet specific needs related 
to in vitro models or patients, the so-called personalized medicine.

The set of bioprinting techniques that allow living cell deposition 
includes: inkjet printing, which is subdivided into two types, continuous 
inkjet (CIJ) 52,53 and drop-on-demand (DoD) 54,55, direct ink writing 
(DIW),which can be controlled by mechanic pistons or pneumatic control 
56-58 and laser printing or stereolithography (Stereolithography-SLA) or 
laser-induced forward transfer (LIFT) 59-62 (Figure 5).

Today, microextrusion and inkjet techniques are the most used 48,58. 
Microextrusion bio printers are one of the conventional 3D printheads 
that use high temperature fused polymeric filament reels (FDM Fused 
Deposition Modeling mechanism). The micro-extrusion mechanism is 
the most widespread in literature and the most used worldwide as it offers 
greater flexibility in the rheological conditions of bioinks. It also allows 
working with high densities and cell types in the same construction and 
allows the deposit of pre-differentiated cells in three- dimensional 
spherical (spheroids) structures. These advantages are of paramount 
importance for the production of complex structures since it is necessary 
to manipulate several types and large cell densities to simulate the 
heterogeneous environment of complex tissues 

50
.

Figure 5 - Bioprinting mechanisms of inkjet, microextrusion, and laser-assisted. A) Inkjet printers, the print head is electrically heated to produce air-pressure pulses 
that force droplets from the nozzle, while acoustic printers use pulses formed by piezoelectric or ultrasound pressure. B) Microextrusion printers use pneumatic or 
mechanical dispensing pistons systems to extrude continuous beads of material and/or cells. C) Laser-assisted printers use lasers focused on an absorbing substrate 
to generate pressures that propel cell-containing materials onto a collector substrate 50. Reprinted by permission from: Murphy and Atala, 2014.

The Challenges Associated with Skin Bioprinting
Challenges for tissue, and more specifically, skin bioprinting, are 

primarily associated with the selection of bioinks, which are the primary 
input for bioprinters.

Bioinks, defined as biomaterials that carry cells during the bioprinting 
process 63-65.Therefore, cells are a mandatory component in the formulation 
of bioinks, which may or may not also carry biomolecules; otherwise, these 
inks are called hydrogels or biomaterial ink. Biomaterial inks produce cell-
-free scaffolds that can be seeded with the cells of interest or combined in 
bioink hybrid systems to produce more complex tissues. Another example of 
biomaterial inks is the case of sacrificial materials which when interspersed 
with bioinks are subsequently washed away leaving clear spaces such as 
channels (ex.: the synthetic Pluronic F127, gelatin), as illustrated in Figure 6.

Therefore, the bioinks to be printed must meet certain requirements 
taking into account rheological (physicochemical) and biocompatibi-
lity properties, such as: printability, biocompatibility, degradation and 
byproduct kinetics, structural and mechanical properties, and material 
biomimicry50. Moreover, the rheological properties of gelation and pre-
servation of the three-dimensional post-impression structures must be 
in synergy with the biocompatibility properties, also allowing the growth, 
differentiation and cellular preservation of the dermis-epidermis layers in 
air-liquid interface (Figure 7).

Some important characteristics for a bioink are summarized in Table 
1. Note that the requirements for obtaining a printable material are asso-
ciated with the characteristics that it must have before and after printing.

Smart hydrogels and bioinks are emerging materials that act in res-

ponse to external stimulus, such as temperature, pressure or pH, and have 
been developed to accompany the so-called 4D Bioprinting, where the 
Time variable is also considered. While bio-printing of functional organs is 
still a Herculean task to be achieved, the good news is that this is happening 
faster than we ever imagined. We already have scientific reports of orga

Figure 6 - Distinction between a bioink (left side), where cells are a mandatory 
component of the bioink formulation, loaded with individual cells, cell aggregates 
(spheroids), one or more cell types, and biomaterial ink (right side), where a bioma-
terial is used for printing and the cells may or may not be seeded after manufacture 
65 (Source: Groll et al., 2018).
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Figure 7 - The challenge for the development of new bioinks aimed at tissue reconstruction. Bioinks must have dual functionality: rheological properties that maintain 
the printed structure and biocompatibility that promote cell viability 66 (Source: Kyle et al., 2018).

Bioink requirements Goal Desired Value or Con-
dition

References

Biocompatibility Must support cell 
viability

Cellular viability superior 
to 70%

(50,67,68)

Viscoelasticity 
(Fiber shape fidelity)

reproduce shear stress 
during the printing pro-
cess, as increasing the 
shear rate reduces the vis-
cosity by

up to an order of mag-
nitude

30 when over 6.107 
mPa.s; 764 mPa.s for 

Nivea Cream,
considered adequate for 

purpose

. 
(50,64,67,68)

Shear-thinning beha-
vior (printability)

reproduce shear stress 
during the printing pro-
cess, as increasing the 
shear rate reduces the vis-
cosity by

up to an order of mag-
nitude

K = 26,1 e n = 0,552 for 
Nivea Cream

(50,64,67,68)

Storage Modulus (Tempo-
rary structure fidelity)

Increases the stability of 
the structure. It can be 
physical, chemical or a 
combination of both.

(50,64,68)

Gelation/crosslinking
(Permanent structure fi-
delity)

Must be of the same 
order of magnitude 
as native skin.

Physical Crosslink (ionic) due 
to mild conditions

(50,64).

Crosslinking process Increases the stability 
of the
structure. It can be physi-

cal, chemical or a combina-
tion of both.

Thermal or chemical cros-
slinking, thrombin and 
calcium chloride

(69)

Biocompatibility Must be Biocompatible Cellular viability superior 
to 70%

(50)

Table 1 - Requirements of useful bioinks formulations for application in tissue engineering in bioprinting processes.
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noids such as liver, heart, bladder, skin and bioprinted cartilage tissues 70.

Bioprinted Skin Models
The role of biomimetics is crucial for tissue engineering. Unraveling the 

secrets of nature and trying to mimic them, starting from the observation 
and understanding of their forms and biogenesis is the main challenge in 
this field 71. Despite the traditional approach of simplifying highly complex 
structures, in nature, structures are complex and nano-and micro-metri-
cally designed. Both industry and academia are driving the development 
of new approaches to human skin engineering and in vitro skin models 
for research, not just compartmentalizing it in the dermis and epidermis, 
using only two cell types, keratinocytes and fibroblasts, and 3D bioprinting 
technology is supporting this evolution.

Didactically, skin bioprinting can be divided into three major stages, 
preprocessing, processing and post- processing. These three steps are 
subdivided into five activity centers: 1) project image acquisition and 3D 
generation and modeling of a digital (.gcode) file, 2) bioink selection, 3) 
cell selection, 4) selection of the bioprinting technique to be used and, 
5) maturation of this tissue in the time variable (Figure 8).

1) 3D modeling: Image preprocessing for bioprinting purposes is 
the phase in which the capture of the bioimaging and the representation 
of this image in 3D occurs, using CAD-compatible software (eg InVesalius, 
BioCAD software) 72. If the intended application of the bioprinted skin is for 
wound healing and transplantation in humans or animals, it is necessary 

Figure 8 - Schematic of the overall 3D bioprinting process for human skin tissue. Preprocessing, processing and post-processing, which is divided into five main 
activities: 1) project image acquisition and 3D generation and modeling of a digital (.gcode) file, 2) bioink selection, 3) cell selection, 4) selection of the bioprinting 
technique to be used and, 5) maturation of this tissue in the time variable19. Source adapted from Wei-Cheng, 2018.

Bioprinted Skin Mimetics: State of the Art
About the state of the art of  bioprinted biomimetic  skin , mouse fibroblast 

(NIH3T3) and human immortalized keratinocyte (HaCat), well-established 
cell lines have been widely combined in studies to print 3D skin constructs 
75,76. In these researches were confirmed high viability of printed cells 
in hydrogel, secretion of collagen by the fibroblasts, and cytokeratin 
(CK14) expression of keratinocytes 77. Collagen type I (from rat tail), the 
main extracellular matrix (ECM) protein in skin, was used as a bioink, 
embedding cells to print skin structures and approximating native skin 
as far as possible78,79. . Koch and collaborators generate dermis-epidermis 
structure with 20 layers of keratinocytes embedded in collagen printed 
by a Laser-assisted bioprinter on a sheet of Matriderm® (decellularized 
dermal matrix)62, to generate dermis-epidermis structure. The researchers 
labeled the fibroblasts and keratinocytes using fluorescent cell membrane 
markers. In another study, dermal/epidermal-like distinctive layers were 
successfully printed by an extrusion printer with primary adult human 
dermal fibroblasts and primary adult human epidermal keratinocytes in a 
3D hydrogel scaffold. Ten layers of type I collagen precursor (rat tail origin) 
were printed. These constructs were able to generate dermis 

to know the type, size and depth of the wound. Capturing charac-
teristics such as skin color and texture are often important. For cosmetic 
testing, this approach to complex designs is not required as a basic or-
ganotypic pattern for testing is more interesting. However, a database of 
various skin types (normal, dry, oily, mixed or sensitive), texture, age and 
color is relevant for skin models focused on product efficacy testing 73,74.

2) Bioink: Next is the stage of materials and bioinks selection, na-
tural polymers, synthetic polymers or decellularized cell matrices. Natural 
polymers such as collagen gelatin, fibrin and chitosan resemble the native 
extracellular matrix and are more cell compatible, while synthetic polymers 
have better mechanical properties and help promote structural integrity.

3) Cell: Concomitant with the materials, we have the stage of cell 
selection, primary, from an immortalized lineage, autologous, heterologous 
or xenographic, this will depend on the application. To make a multilayer 
skin mimetic, it is necessary to use more than one cell type (fibroblasts, 
keratinocytes, melanocytes, mesenchymal cells)73.

4) Printing: After the preprocessing steps are completed, we reach 
the processing step, when one of the three possibilities (ex.: micro-
extrusion, inkjet or laser-based) of bioprinting is selected to achieve the 
best resolution, precision and required scalability.

5) Post-processing: Post-processing of the bioprinted construct 
involves maturation of the tissue in the time variable (currently known as 
the 4D dimension), in a greenhouse or bioreactor. Finally, the biomimetic 
skin is transplanted to a patient or used for drug or and cosmetic testing.

and epidermis structures; however, the construct did not show tissue 
generation or the establishment of intercellular junction78 .

Abaci and collaborators built a 3D bioprinted vascular perfusion 
network from the generation of channels embedded in an alginate layer 
simulating the dermis 80. Endothelial primary cells and induced pluripotent 
stem cells (IPS) were employed to obtain a permeable endothelial barrier. 
This model enables the study and systemic administration of medications, 
as well as being a developing platform for drug screening. Michael et al. 
(2013)75, printed a laser bilayer skin and implanted the substitute in the 
skin fold of rats. In addition to dermis and epidermis formation, a small 
amount of neovascularization was observed at the site of the wound 11 
days after implantation. Similarly, Cube and collaborators (2016)81 used 
microextrusion bioprinting and implanted it in mice. They demonstrated 
that equivalent skin is similar to native skin in structural and functional 
terms.

However, despite these progresses in skin bioprinting, a scaffold-
free model bioprinted with human primary skin cells is still not available.
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Natura Skin Model Case
The company Natura Cosmetics in 2018 signed a research colla-

boration agreement with the Faculty of Pharmaceutical Sciences of 
the State University of São Paulo and since then it has been deve-
loping its own skin models using 3D bioprinting technology74. The 
company has not used animal models for efficacy and safety tests sin-
ce 2006 and had been importing reconstructed models and mos-
tly using the skin model developed by University of São Paulo at the 
laboratory of Prof. Silvya Stuchi Maria-Engler (USP / Sao Paulo).

To conduct this research, Natura is using the 3D bioprinting pla-
tform. The goal is to translate the technology used by USP of manually 
fabricated full thickness skin models to an automated model and bio-
fabricated via 3D bioprinting 82,85. The research uses a bioink composed 
of  collagen Type I 6,9 alginate86,87 gelatin87 and fibrinogen69,88 developed 
in conjunction with optimal printing conditions and 3D printer func-
tions. Two bioprinters are being used in the research, the Inkredible 
model, from the Swedish company Cellink and the GenesisII™mo-
del from the Brazilian startup 3D Biotechnology Solutions - 3DBS. 
Both work as a microextrusion-based mechanism with two printhea-
ds, with the exception that Inkredible uses air pressure extrusion and 
Genesis uses mechanical pistons. They are an open source machine 
developed to fully comply with laboratory safety standards (Figure 9).

The bioink formulation has three purposes: (i) maintaining an appro-
priate gel rheology during the extrusion process, (ii) enabling the con-
solidation of the printed object during the post-processing step, and 
(iii) allowing the adequate development of the 3D cell network leading to 
a correct organization and function of the maturate tissue. These three 

Figura 9 - The two bioprinters used under the project to develop skin models to meet the cosmetic industry. A) Cellink, Inkredible model (Natura Cosmetics). Source: 
Cellink / EU. B) 3DBS, Genesis II model (Faculty of Pharmaceutical Sciences / USP). Source: 3DBS site/BR.

Figure 10 -  a) Dermal-epidermal skin model printed prior to the passage to air-liquid surface (Source: Natura Cosmetics / 2019), b) Full thickness skin  on an air-liquid 
surface (Lab. Prof. Silvya Maria-Engler Stucchi / USP).

functions are supported by the following biomaterials. Type I collagen, 
the main component of the dermal layer, is soluble in acidic pH. Gelatin, 
a collagen-based polymer, with a phase transition temperature at 35°C, 
is used as a rheological component giving the bioink its strength once 
printed on a cooled substrate but still being soluble and then eliminated 
in the subsequent steps of the process. Alginate, a carbohydrate-based 
polymer, with the ability to form hydrogel in the presence of calcium, is 
was used as a structural component giving the printed bioink mechanical 
stability once the gelatin solubilized69. Fibrinogen, a glycoprotein with the 
ability to form hydrogel was used both as a structural and a maturation 
component thanks to its cellular adhesion RGD pattern 89.

For the generation of a dermo-epidermal equivalent, the bioinks are 
loaded with primary cell lines, fibroblasts and keratinocytes and mela-
nocytes, in the case of pigmented skin models. Once we have obtained 
the three-dimensional structure, the stratum corneum should meet the 
requirements of OECD Guide 439 90 (Figure 10).

Initially, the ability to extrude the material is rheologically evaluated 
by evaluating its pseudoplasticity. Next, the printed structure should be 
stabilized immediately after printing using a material that does not collapse 
after deposition. This stability can also be assessed by material rheology, 
through viscosity and yield stress 67. The crosslinking after printing is done 
due to the need to manipulate the printed structure without losing its ge-
ometry and to impart some mechanical resistance to the printed scaffold. 
Among the possible types of crosslinking, ionic is used because it has 
milder conditions during the process 46,50.

The study is focused on the demonstration of the capability of both 
3D printers to produce full thickness skin equivalents in an effective way 
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and with a cellular architecture of the mature tissue highly similar to the 
in vivo skin composition and organization. The final aim of the developed 
technique is of course, the production of highly complex skin models.

Conclusions
Despite the advances, there are still challenges in the reconstruc-

tion of this organ, such as the inclusion of appendages, hair follicles, 
hypodermic layer, microvessels and immune cells. Recently, researchers 
at Rensselaer Polytechnic Institute/USA have developed a full thickness 
3D print skin with microvessels 91, also, a group of scientists from Japan 
developed a 3D skin with hair follicles and sebaceous glands92, a major 
leap in the Bioprinting field. Even so, more effort is needed to create 
functional skin with sufficient vascularity, innervation, and functions such 
as sensation of touch and perception. Reproducing the color and texture 
of native skin is another major challenge. Ex vivo skin is a valuable model 
for skin penetration studies but due to logistical and viability limitations 
the development of in vitro alternatives is required93.

Now the challenge is to produce dry, oily skin with different texture, 
pigmented with different shades of European white, moderate Asian and 
dark African tones 93. Scalability and accessibility are still two other obs-
tacles to overcome. There are some ethical, social and legal challenges 
that need attention before the technology and product can be successful.

On a timescale, the bioprinted skin mimetics will follow logic of market 
regulation and maturation:

•Cosmetics Industry: Cosmetic companies would first test their pro-
ducts on skin models as an alternative to animal testing;

•Pharmaceutical / Chemical Industry: Pharmaceutical industries will 
test their medicines and chemical products using these in vitro skin mo-
dels (microfluidic systems);

•Organ Transplantation: treatment of burns and injuries using bio-
printed skins; cells taken from the patient himself (autologus) will be used 
in this bioprinting process;

•In vitro 3D tumor models: Tumor models with tumor microenviron-
ment designed to study the modus operandi  of cancer proliferation, 
metastasis and response to drugs; and

•Precision Medicine: With the 3D skin / tumor model, the effecti-
veness of the medicine can be studied for each patient and thus help in 
personalized medicine.
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