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R E V I E W  A R T I C L EO R I G I N A L  A R T I C L E

Morphological analysis reveals the influence of genipin and 
polyvinyl alcohol on porous morphology on interpenetrated 
chitosan xerogels

Abstract: The morphological characterization of xerogels composed of chitosan, genipin, and PVA demonstrates that 
their porous architecture is essential to their function as scaffolds for tissue engineering, with significant impacts on 
absorption properties, cell viability, and potential for biomedical application. SEM and microCT analysis confirmed that 
these xerogels possess a highly porous internal morphology, with interconnected pores forming an interpenetrating 
polymeric network, free from phase separation between chitosan and PVA. Hemocompatibility assays suggested 
the non-cytotoxic nature of these materials. Varying genipin concentrations showed that lower concentrations 
produce more heterogeneous pore sizes, while higher concentrations yield a uniform pore distribution, likely due 
to the increased availability of crosslinking sites. Additionally, the degree of anisotropy increases with both higher 
genipin and PVA concentrations, suggesting enhanced alignment within the three-dimensional structure. The total 
open pore volume, which ranges from 88% to 93%, is modifiable based on the concentrations of genipin and PVA. 
These insights indicate that these xerogels are viable candidates for clinical applications, particularly as potential 
substitutes for nucleus pulposus, given their high swelling capacity, porosity, interconnectivity, biocompatibility, and 
adaptable morphological characteristics.
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Introduction
Tissue engineering has become a key area of 

biomedical science, focusing on the repair and 
regeneration of damaged or diseased tissue. Among 
the numerous strategies explored, the development 
of three-dimensional (3D) biopolymer-based 
scaffolds has shown promise in replicating the 
architecture of the native extracellular matrix (ECM)[1]. 

Chitosan, a chitin-derived biopolymer, has 
attracted the interest of researchers due to its 
biocompatibility, biodegradability and versatility 
in forming gels that can be used as scaffolds for 
cell culture [2].  For this reason, this biopolymer 
can help in the development of various hydrogel 
formulations with morphological and biomechanical 
properties that mimic, for example, the morphology 
of the intervertebral nucleus pulposus [3]. The 
nucleus pulposus is an essential component of the 
intervertebral disc and plays a fundamental role in 
the biomechanics and functionality of the spine. Its 
degeneration can lead to painful and debilitating 
conditions, making it a subject of great interest in 
traumatology[4] and the treatment of occupational 
diseases[5]. This emphasizes the need to establish 
effective strategies for its recovery.  

Through the use of advanced techniques such 
as scanning electron microscopy (SEM) and X-ray 
microtomography (microCT), it is possible to analyze 
interpenetrating hydrogels and observe how the 
dispersed phase influences the porous morphology 
of gels [6,7] based on a biopolymer matrix such as 
chitosan [8]. Interpenetrating gels produced by the 
mechanical mixing of chitosan with polyvinyl alcohol 
(PVA) at different concentrations could represent an 
important advance in the development of scaffolds. 
They enable new approaches by incorporating 
dispersed phases, such as PVA, to create new 
types of interpenetrating gels. An interpenetrating 
gel consists of two or more polymer networks (of 
the same or different nature) that chemically or 
physically interlace but are immiscible[9]. PVA is a 
synthetic polymer known for its excellent rheological 
behavior, hydrophilicity, cell compatibility and ability 
to improve the mechanical and structural properties 
of polymer gels[10].  It is also used in the formulation 
of ceramic pastes for bioprinting applications[11].

Some gels need to be crosslinked to achieve the 
desired behavior. In the context of chitosan, genipin, 
emerges as one of the most promising agents for 
crosslinking a natural and non-cytotoxic compound. 
Being a natural product, it is of great interest for 
some applications where its solubility in water or in 
ethanolic solutions at low concentration allows its 
easy manipulation to be incorporated into biopolymer 
gels; also providing enhanced structural stability 
to gels while maintaining their biocompatibility 

[12]. Simple tests, such as hemocompatibility tests, 
show that the new biomaterial formulations can be 
safely used in biomedical applications. In addition, 
international technical standards (ISO and ASTM) 
define the test protocols for performing this type of 
evaluation [13 - 15].  

The rheological, physicochemical, mechanical 
and bioactive properties of these formulated gels 
depend directly on their internal morphology. 
Specialized techniques like scanning electron 
microscopy (SEM) and microtomography (microCT) 
are combined to thoroughly analyze the three-
dimensional structure of the gel in its dehydrated 
form, or xerogel. 

Scanning electron microscopy (SEM) enables the 
visualization of surface and internal structures at 
the microscale and nanoscale [16]. Microtomography 
(microCT) uses X-rays to produce 3D images, enabling 
detailed analysis of pore distribution in materials 
[17]. MicroCT provides additional information that 
cannot be obtained with SEM alone. This combined 
approach offers a clearer understanding of the 
morphological properties of the gel and establishes 
a foundation for future research into applications 
like tissue regeneration and other biotechnological 
uses. This is crucial because a well-developed 
porous structure facilitates nutrient exchange, 
oxygenation and cell growth within the scaffold [18]. 
The interconnection between pores also plays a 
fundamental role in facilitating adequate blood flow, 
which is essential for the successful integration of 
the implant with the surrounding tissue [19]. 

This study emphasizes the benefits of using 
chitosan for scaffolds in tissue engineering and 
highlights how genipin enhances its formulation 
by promoting cross-linking, which ensures 
the dimensional stability of these promising 
biomaterials. Understanding swelling processes is 
essential, as they offer valuable insights into the 
diffusion capacity, fluid absorption, and dimensional 
stability of materials. Research on biopolymer-based 
interpenetrating gels offers significant potential for 
regenerative medicine, particularly in restoring the 
intervertebral nucleus pulposus. 

Therefore, the primary aim of this study is to 
investigate how the preparation of a chitosan-based 
gel with different concentrations of PVA impacts 
not only the physical properties of the gel but also 
its potential to serve as an effective support for cell 
growth and tissue regeneration. Furthermore, by 
altering the concentrations of genipin, this study 
seeks to elucidate the impact of this variable on 
essential characteristics, including porosity, pore 
volume, interconnection density, fractal dimensions, 
and pore wall thickness. The preliminary results 
indicate that incorporating PVA as a dispersed and 
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interpenetrating phase markedly enhances the 
microarchitecture of the gel, surpassing that of gels 
composed solely of chitosan and genipin. 

 
Materials and Methods
Preparation of Gel Formulations
The chitin used in this study was extracted from 

shrimp shells (Litopenaeus vannamei) at the B5IDA 
laboratory, and its derivative, chitosan (Ch), was 
obtained through a standard deacetylation reaction 
in an alkaline medium at elevated temperatures, 
resulting in a degree of deacetylation of 79%. This 
process followed the protocol outlined by Gallardo 
et al. (2019) [20]. The molecular weight of the Ch was 
determined using capillary viscometry, yielding a 
value of 1.04 × 10⁵ g/mol. The synthetic polyvinyl 
alcohol (PVA) (Himedia, USA) used in the study had 
a molecular weight of 8 × 10⁴ g/mol. The natural 
crosslinker, genipin (Gen), was extracted from the 
fruit of Genipa americana, purified in the B5IDA 
laboratory, and characterized following the protocol 
described by Colmenares et al. (2024) [12].

For the preparation of the interpenetrating 
network gels, stock solutions were prepared for 
each polymer, Ch and PVA. The Ch gel was prepared 
at a [2.5% w/v] concentration using a [1% v/v] acetic 
acid solution (Fluca Riedel-de Haen, 98%, Spain). 
The PVA solution was prepared at concentrations 
of [1% w/v] and [2% w/v] in deionized water. For the 
crosslinking agent, Gen crystals were dissolved in 
a 30% ethanol solution to obtain diluted solutions 
with concentrations of [0.010% w/v] and [0.025% 
w/v]. Each gel formulation was prepared by mixing 
equal volumes (1:1:1) of Ch/Gen/PVA, which were 
combined using a paddle mixer at 200 rpm for 10 
minutes at room temperature. The interpenetrated 
gels formed were thoroughly washed by dialysis, and 
this procedure was repeated at least 2 times for each 
formulation before being taken to the lyophilization 
process (Labconco-Freezone 2.5, -45°C, and 1.5 
Torr vacuum for 48 hours). The resulting xerogels, 
which are the focus of this study, were properly 
stored in desiccators, and the composition of each 
formulation is summarized in Table 1.

Morphological characterization of xerogels
Microtomography (microCT)
The three-dimensional (3D) morphology of the 

scaffolds was investigated through microtomo-
graphy (microCT) analysis. For this, a SkyScan1272 
CMOS Edition microCT scanner (Bruker, Kontich, 
Belgium) was set up with these parameters: 20 kV 
source voltage, 100 µA current, 4 µm pixel size, 0.3° 
rotation steps from 0 to 180°, no filter, 4-frame ave-
raging, and 2000 ms exposure time per image. The 
scanning time for each sample was approximately 
2 hours.  

NRecon software (v2.1.0.1, Bruker, Kontich, Bel-
gium) was used to reconstruct X-ray projections, 
applying a 4% beam hardening correction, a 2-le-
vel ring artifact correction, and no smoothing. The 
3D visualizations were generated using the CTVox 
software (v.3.3.1, Bruker, Kontich, Belgium) (Fig.1). To 
image analysis, the CTan software (version 1.20.8; 
64-bit; Bruker microCT, Kontich, Belgium) was em-
ployed, in which the reconstructed images were 
subjected to binarization utilizing the Otsu 3D au-
tomatic segmentation algorithm[21,22].  Additionally, 
3D noise removal operations, such as filtering and 
despeckle, were applied to improve image quality. 

Gel F1 (% w/v) F2 (% w/v) F3 (% w/v) F4 (% w/v) F5 (% w/v) F6 (% w/v)

Ch 2,5 2,5 2,5 2,5 2,5 2,5

Gen 0,010 0,025 0,010 0,025 0,010 0,025

PVA 0 0 1,0 1,0 2,0 2,0

Table 1 - Composition of each formulation of interpenetrated Ch/Gen/PVA gels.

Subsequently, a comprehensive 3D morphometric 
analysis was conducted, which encompassed the 
evaluation of porosity (both closed and open), pore 
interconnectivity, degree of anisotropy, fractal di-
mension, as well as pore size distribution within the 
volume of interest.  

Scanning Electron Microscopy (SEM)
The morphological characteristics of the scaffold 

surfaces were analyzed using scanning electron 
microscopy (SEM) on a Tescan MIRA 3 (Korea). For 
each sample, a cryogenic cross-section was obser-
ved to examine the internal morphology of the xe-
rogels and correlate these findings with the results 
obtained from microCT. Prior to observation, the 
samples were sputter-coated with gold to ensure 
adequate conductivity. During SEM imaging, a 15 kV 
accelerating voltage was applied in the Tescan mi-
croscope.

Swelling Assay 
Each xerogel sample, shaped as a cylindrical 

disk, was weighed and then immersed in a 
phosphate-buffered saline (PBS) solution at 37°C 
for a period of 36 hours, which is the time required 
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for all formulations to reach a constant weight and 
maintain physical stability. The immersion test was 
carried out in duplicate for each formulation, as well 
as the weighing was also carried out in duplicate, 
obtaining the error bars and represented in the result 
presented.

Based on the weight variation, the swelling ratio 
(Rh) was calculated using the following equation[12]:

Rh (%) = [( W
hydrated

 f(t) – W
xerogel

)] x100% / (W
xerogel

)      (eq. 1)

where:  W hydrated represents the weight of 
the hydrated xerogel as a function of time until 
equilibrium is reached; W xerogel corresponds 
to the weight of the dry xerogel (deshydrated 
gel). The experiment was conducted in triplicate 
using cylindrical samples to ensure accuracy and 
reproducibility of the results.

Hemocompatibility 
This assay was conducted in accordance with 

the ISO 10993-4 standard for biological evaluation 
of medical devices[23]. The hemolysis test was 
performed using blood agar, prepared according 
to the instructions provided by the manufacturer 
(Merck, Amsterdam). The agar base was cooled to 45 

°C and mixed with sterile defibrinated sheep blood 
(INH Instituto Nacional de Higiene UCV, Caracas) to 
achieve a final concentration of 5% (v/v). The xerogel 
samples were sterilized by exposure to UV light for 
15 minutes. Subsequently, the prepared blood agar 
was poured into sterile Petri dishes, and the xerogels 
were carefully placed onto the solidified agar. The 
Petri dishes were then incubated in a 5% CO₂/95% 
air environment at 37°C for 48 hours. Finally, the 
results were documented photographically.

Results and Discussion
It is well established that the pore architecture 

in hydrogels is a critical factor in determining their 
mechanical strength, fluid absorption capacity, and 
cell viability, while also significantly influencing 
cellular proliferation and differentiation[24-26]. 
Therefore, a thorough understanding of the pore 
morphology within a 3D structure is crucial, particularly 
when assessing its potential for biomedical, tissue 
engineering, and pharmacological applications. The 
results obtained from advanced techniques, such 
as SEM combined with microtomography (microCT), 
provide critical insights into this pore architecture 
and its degree of interconnectivity. Figure 1 shows 
representative images of the cross-sectional 
views of each xerogel, reconstructed using µCT 
and further examined transversally via SEM. As 
illustrated, the chitosan-based xerogels, regardless 
of the incorporation of genipin as a crosslinking 
agent or PVA as a dispersed and interpenetrating 
phase, exhibited a highly porous internal structure 
characterized by interconnected pores. This 
interconnected porosity is further confirmed by the 

SEM micrographs accompanying the figure. The 
key microCT-derived parameters are summarized 
in Table 2.

Upon detailed examination, the morphology 
resulting from the blending of the natural polymer 
chitosan with the synthetic PVA showed no 
evidence of phase separation in any of the prepared 
formulations. This observation was confirmed 
through both SEM analysis and microtomography 
(microCT), which revealed consistent structural 
integrity across the entire network. Consequently, 
it can be considered that the hydrogels formed 
in this study exhibit the characteristics of a fully 
interpenetrated polymer network (IPN)[27].

Moreover, when evaluating the effect of genipin 
concentration on the microstructure of each 
xerogel formulation, it was observed that lower 
concentrations of genipin resulted in a broader, 
more heterogeneous pore size distribution, whereas 
increasing the concentration of the crosslinking agent 
led to a narrower, more uniform distribution (Fig. 2). 
Specifically, at a genipin concentration of 0.010%, 
the pore sizes ranged from 180–340 µm and 350–
480 µm, while at 0.025%, the distribution became 
more homogeneous, ranging from 220–340 µm. 
This phenomenon can be attributed to the random 
nature of the crosslinking reaction: as the genipin 
concentration increases, the number of effective active 
crosslinking sites also increases, leading to greater 
uniformity. Additionally, the higher concentration of 
the interpenetrating PVA phase appears to further 
contribute to the improved uniformity in pore size 
distribution.

These results may be associated with the degree 
of anisotropy (DA), which appears to increase with 
higher genipin concentrations and the presence 
of the interpenetrating PVA phase. According to 
the literature, DA refers to the measurement of 
the preferential alignment of solid scaffolds in 3D 
structures along a particular direction[28]. In this 
context, the chitosan/PVA xerogels crosslinked with 
genipin demonstrated an almost two-fold increase in 
DA when the genipin concentration was raised. These 
values are consistent with porous scaffolds exhibiting 
porosities between 80–95%[22]. This suggests that 
genipin, as a crosslinking agent, may promote a 
more anisotropic properties in these scaffolds[29].

According to the data presented in Table 2, the 
open pore volume and the total open pore percentage 
in the formulations ranged between 88–93%. 
However, a slight reduction in these percentages 
was observed as the genipin concentration 
increased. This result is consistent with the fact 
that higher genipin concentrations promote more 
extensive crosslinking reactions, leading to an 
increase in gel viscosity (hindering the mobility 
of molecular chains) and a higher crosslinking 
density, which generates a more stable 3D network. 
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Figure 1 - View of each xerogel and their internal morphology as observed through SEM and X-ray microtomogra-
phy techniques.
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 Figura 2 - Pore size distribution of each xerogel sample. Results obtained from microCT analysis.
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Parameter
Samples

F1 F2 F3 F4 F5 F6

Degree of Anisotropy (DA) 1,622 3,182 2,054 3,305 1,754 2,971

Volume of closed pores (mm3) 0,017 0,012 0,001 0,002 0,000 0,002

Closed porosity (%) 0,114 0,076 0,006 0,019 0,006 0,022

Volume of open pore space (mm3) 114,281 119,113 107,844 78,723 90,783 72,469

Open porosity (%) 88,743 88,086 92,621 90,911 92,971 89,295

Total volume of pore space (mm3) 114,298 119,126 107,844 78,725 90,784 72,471

Total porosity (%) 88,756 88,095 92,621 90,913 92,972 89,298

Connectivity 32360 73875 185848 132561 140807 122170

Fractal Dimension 2,472 2,542 2,533 2,464 2,467 2,576

Table 2 - Morphometric Parameter Assessment. The data are represented for nearly 700-900 slices 
obtained after MicroCT imaging.

This result is particularly promising, as studies in the 
field of tissue engineering scaffolds have reported 
that, in relation to the porous structure of biomaterials, 
smaller and more regular pore sizes improve the 
mechanical properties of the gel[30].  However, the 
pore size cannot be too small, otherwise it could 
have restrictions for the diffusion of biomolecules 
(such as certain proteins, nucleic acids, etc.). 
Furthermore, the diffusion of macromolecules that may 
be encapsulated and/or released from such structures 
is also enhanced[31]. Considering the use of these 
materials for cell culture studies, an adequate spatial 
distribution of cells deposited on the scaffold can be 
achieved, which facilitates a homogeneous distribution 
of the extracellular matrix. If the pores are too small, it 
may make it difficult for these essential elements to 
pass through, while if they are too large, they may not 
provide adequate support for cells. According to what 
the literature has reported, the pore size range is usually 
between approximately 75 to 500 micrometers[30-32]. 
This size allows cells to adhere and migrate through the 
scaffold, as well as facilitating the diffusion of nutrients 
and oxygen, as well as the removal of waste.  And they 
should not be less than 20 microns. Consequently, 
this could initially promote cell proliferation and 
later differentiation [32]. Additionally, this ensures the 
vascularization processes characteristic of tissue 
regeneration[33].

Additionally, increasing the proportion of PVA 
resulted in a decrease in pore size, although the pore 
size distribution became broader. The higher PVA 
content, acting as an interpenetrating and dispersed 
phase within the chitosan matrix, tends to elevate 
the viscosity of the mixture. This increased viscosity 
leads to a slower gelation rate, thereby promoting 
greater solvent evaporation, which indirectly raises 
the concentration of the solution over time. This 

complex process results in the formation of more 
compact 3D structures, characterized by slightly 
smaller pores while preserving effective pore 
interconnectivity.   

An important feature of all the xerogels obtained 
is their pore interconnectivity. The literature 
reports that such interconnectivity creates free 
volume, which facilitates cellular migration during 
the proliferation phase [34], and thus supports 
the formation of the extracellular matrix and the 
movement of fluids, promoting vascularization 
throughout the molecular network [35]. Although 
no significant differences in this parameter were 
observed with increasing PVA content, the presence 
of the interpenetrated PVA phase did enhance pore 
interconnectivity compared to formulations with 
only the chitosan/genipin phase [36].

Another critical parameter to evaluate is the fractal 
dimension (Df) of the hydrogels, a dimensionless 
index that characterizes the continuous and 
irregular geometry of three-dimensional networks 
and quantifies the complexity of their architecture 
[22, 37]. Previous studies have indicated that Df 
can significantly influence cellular behavior and 
is regarded as a key metric in the design and 
development of scaffolds for tissue engineering[22, 28]. 
As shown in Table 2, our analysis revealed that the 
incorporation of genipin or PVA had no statistically 
significant effect on the Df of the xerogels, with 
values remaining similar across all cases, ranging 
from 2.4 to 2.6. These values can be attributed to 
the effective crosslinking of the chitosan and PVA 
polymer chains within the 3D network, despite 
compositional variations in the formulations. 
Furthermore, this crosslinking process did not 
negatively impact the total porosity, which remained 
at approximately 90%, nor did it compromise the 
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interconnectivity between pores, both of which are 
essential for maintaining the functionality of the 
scaffolds.  

Regarding the thickness of pore walls (>80%) 
in the chitosan xerogels, no significant differences 
were found, regardless of the incorporation of 
genipin and PVA. Most pores exhibited a similar 
wall thickness, ranging from 12–20 µm to 28–36 µm, 
as shown in Fig. 3. However, when 1% PVA was used, 
the predominant wall thickness fell within the 12–20 
µm range, whereas with 2% PVA, the predominant 
range expanded to 12–28 µm. This clearly confirms 
our hypothesis that genipin facilitates crosslinking 

between chitosan chains, independent of the 
presence of an interpenetrated PVA phase, and that 
this helps improve pore connectivity (as previously 
demonstrated). This enhanced connectivity could 
improve fluid transport and enable the generation 
of three-dimensional structures with walls that 
ensure dimensional stability. This is an important 
consideration when developing structures with 
characteristics that could potentially biomimic those 
of an intervertebral disc component, specifically 
the nucleus pulposus, a central, gelatinous, yet 
mechanically resilient part [38]. 

Figure 3 - Effect of genipin and interpenetrated PVA phase in chi-
tosan xerogels on pore wall thickness. 
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Swelling Assay 
At the macroscopic level, the swelling capacity 

of a hydrogel is determined by the amount of 
space within the polymer network that can be 
filled with fluid, the polymer-fluid interaction forces, 
electrostatic forces, and osmotic forces[39,40]. The 
first observation from the results shown in Fig. 4, 
is that all formulations behave as superabsorbent 
gels[40], as in all cases the swelling ratio significantly 
exceeds 100%, with each sample maintaining its 
physical and dimensional stability when swollen. 
In most cases, thermodynamic equilibrium was 
reached after 28–30 hours, and no further water 
absorption (gravimetrically) or volume change was 
observed until the end of the experiment at 36 hours. 
This process, also known as Donnan equilibrium[41], 
correlates the water absorption to the elimination of 
the osmotic pressure difference between the interior 
of the polymer network that forms the gel and the 
external solution in which the hydrogel is immersed[42, 43].

To explain this result, two fluid absorption 
mechanisms can be considered, both of which may 
describe the behavior observed in each formulation. 
The first mechanism is related to polymer-solvent 

interactions, specifically the hydroxyl (-OH) groups 
interactions (from both PVA and chitosan), and the 
protonated amino groups (-[NH3]+) of chitosan with 
water molecules. The second mechanism involves the 
diffusion process through the free volume or space 
generated by the pores and their interconnectivity, 
which allows the solvent to permeate these areas, 
resulting in the relaxation of the Ch/PVA polymer 
chains that form the crosslinked network [44-46].

According to the morphologies described 
in Figures 1–3 and the results summarized in 
Table 2, among the three components in each 
formulation, genipin not only acts as a crosslinking 
agent but also enhances the water absorption 
capacity, as evidenced by the increase in swelling 
percentage[40]. Additionally, the presence of PVA 
as an interpenetrated phase further supports this 
process, as these polymer chains not only improve 
pore interconnectivity but also contribute due to the 
hydrophilic nature of PVA and its greater elasticity 
compared to chitosan. This combination promotes 
better and greater molecular relaxation, allowing a 
significant amount of water to be retained within the 
gel without causing a loss of dimensional stability.

Figure 4 – Swelling assay of xerogels under controlled time and temperature 
conditions. It is clear from the figure that the swelling behavior is influenced by 
the presence of the interpenetrated PVA phase in the chitosan matrix.  Source: 
Own autorship, 2024
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Hemocompatibility
Among the essential requirements for a material 

to be used as an implant is biocompatibility, which 
is evaluated through a variety of experiments 
standardized by international technical norms (ISO 
10993-4) [23]. One such test is the hemocompatibility 
assay. Hemolysis, or the lysis of blood cells, refers 
to the rupture of the cell membrane, allowing 
hemoglobin to be released from erythrocytes. There 
are three types of hemolysis: alpha, beta, and gamma. 
In alpha hemolysis, there is a partial breakdown 
of hemoglobin from erythrocytes. Beta hemolysis 
involves complete hemoglobin rupture, causing a 

“clearing” or whitening effect in the agar solution 
(known as a white halo). Gamma hemolysis, on the 
other hand, is not technically a hemolytic process 
but rather an oxidation process of the blood [9].

Figure 5 shows the evaluation of the xerogels 
in the blood-agar solution (as described in the 
experimental methodology). As can be seen, 
regardless of the genipin or PVA concentration 
within the studied range, no hemolysis was 
observed—neither alpha nor beta, and even the 
brown discoloration typical of gamma hemolysis 
was absent. As reported by Viera et al[9], where 
acrylamide was used as a positive control, showing 
a white halo due to hemotoxicity. This indicates 
that, under the experimental conditions tested, 
there was no hemolytic effect during the incubation 
period. In other words, these formulations did not 
cause the rupture of blood cell membranes, which 
is a positive indication of the potential of this 
biomaterial and opens a window for its application 
in tissue engineering. However, more complex 
cellular studies are still needed.

Figure 5 -  Agar-blood hemocompatibility assay for the evaluation of the 
studied xerogels, according to ISO 10993-4 standards. Source: Own autor-
ship, 2024.
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This result for the interpenetrated gels is not 
surprising, as numerous studies have reported that 
both chitosan (the primary polymer in the xerogels) 
and PVA (the dispersed phase) are non-toxic and 
do not elicit allergic or inflammatory responses 
via any route (implant, ingestion, or topical use)[47, 

48]. Moreover, chitosan has been shown to exhibit 
antimicrobial, hypocholesterolemic, biodegradable, 
mucoadhesive and immunostimulant properties, 
among others[49]. Many studies have demonstrated 
its biocompatibility with various types of cells[49, 51]., 
and this cellular biocompatibility seems to increase 
with higher degrees of deacetylation. The chitosan 
used in this work had a degree of deacetylation of 
79%. A higher degree of deacetylation means more 
free amino groups along the polysaccharide chain, 
which are responsible for promoting cell adhesion 
and proliferation[52].

Conclusions
The analysis of interpenetrated xerogels composed 

of chitosan, genipin, and PVA highlights the crucial 
influence of pore architecture and interconnectivity 
on their properties and potential applications. This 
was demonstrated through the use of innovative 
techniques, such as X-ray microtomography 
(microCT), complemented by scanning electron 
microscopy (SEM) results. It can be concluded that 
the incorporation of genipin serves as an effective 
crosslinker, allowing control over pore size distribution, 
while PVA, as an interpenetrating phase, enhances 
network interconnectivity, thereby providing a 
suitable environment for cell growth. These materials 
exhibit hemocompatibility and superabsorbent 
behavior. The ability to tune their structural properties 
further strengthens their potential as scaffolds for 
use in three-dimensional environments, positioning 
them as promising candidates for nucleus pulposus 
replacement in biomedical applications.
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